首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A poly(l-lactic acid)-block-polystyrene-block-poly(methyl methacrylate) (PLLA-b-PS-b-PMMA) triblock copolymer was synthesized with a crystalline PLLA end block. Single crystals of this triblock copolymer grown in dilute solution could generate uniformly tethered diblock copolymer brushes, PS-b-PMMA, on the PLLA single crystal substrate. The diblock copolymer brushes exhibited responsive, characteristic surface structures after solvent treatment depending upon the quality of the solvent in relation to each block. The chemical compositions of these surface structures were detected via the surface enhanced Raman scattering technique. Using atomic force microscopy, the physical morphologies of these surface structures were identified as micelles in cyclohexane and “onion”-like morphologies in 2-methoxyethanol, especially when the PS-b-PMMA tethered chains were at low tethering density.  相似文献   

2.
Core-shell cylindrical polymer brushes with poly(t-butyl acrylate)-b-poly(n-butyl acrylate) (PtBA-b-PnBA) diblock copolymer side chains were synthesized via ‘grafting from’ technique using atom transfer radical polymerization (ATRP). The formation of well-defined brushes was confirmed by GPC and 1H NMR. Multi-angle light scattering (MALS) measurements on brushes with 240 arms show that the radius of gyration scales with the degree of polymerization of the side chains with an exponent of 0.57±0.05. The hydrolysis of the PtBA block of the side chains resulted amphiphilic cylindrical core-shell nanoparticles. In order to obtain a narrow length distribution of the brushes, the backbone, poly(2-hydroxyethyl methacrylate), was synthesized by anionic polymerization in addition to ATRP. The characteristic core-shell cylindrical structure of the brush was directly visualized on mica by scanning force microscopy (SFM). Brushes with 1500 block copolymer side chains and a length distribution of lw/ln=1.04 at a total length ln=179 nm were obtained. By choosing the proper solvent in the dip-coating process on mica, the core and the shell can be visualized independently by SFM.  相似文献   

3.
We report the synthesis of a well-defined linear tetrablock quaterpolymer of poly(butyl acrylate)-b-polystyrene-b-poly(methyl acrylate)-b-poly(methyl methacrylate) by combining atom transfer radical polymerization (ATRP) and a click coupling approach. For this purpose, polystyrene-b-poly(butyl acrylate) (AB) was prepared by ATRP using macroinitiator as α-trimethylsilyl(TMS)-alkyne ω-bromo polystyrene. The α-(TMS) end of the AB diblock copolymer was deprotected using tetrabutylammonium fluoride (TBAF) in THF. The ω-azide end of the CD diblock copolymer was made from poly(methyl methacrylate)-b-poly(methyl acrylate) (CD) via transformation of the bromine chain end by a simple nucleophilic substitution reaction with NaN3 in DMF. Click coupling between the ω-azide end in CD diblock copolymer with the α-alkyne end in the AB diblock copolymer was then performed by Cu1-catalyzed (3+2) cycloaddition. Gel permeation chromatography (GPC), FT-IR and 1H NMR spectroscopy confirmed the successful formation of a linear ABCD tetrablock copolymer via ATRP and click coupling.  相似文献   

4.
A combination of ring-opening polymerization and atom-transfer radical polymerization was used to synthesize a four-arm star-shaped poly(ε-caprolactone)-b-poly(2-hydroxyethyl methacrylate). The structure of obtained copolymer was determined by Fourier transform infrared, 1H and 13C NMR spectroscopies. The uniform electroactive nanofibers consisting blend of four-arm star-shaped poly(ε-caprolactone)-b-poly(2-hydroxyethyl methacrylate) copolymer and polyaniline were produced using electrospinning technique. The electroactivity of prepared nanofibers was investigated using cyclic voltammetry measurement. The morphologies of electrospun nanofibers produced from four-arm star-shaped poly(ε-caprolactone)-b-poly(2-hydroxyethyl methacrylate) and their blends with polyaniline were investigated by the scanning electron microscopy. The presence of polyaniline resulted in significant decrease of sticking fibers.  相似文献   

5.
Haimanti Datta 《Polymer》2009,50(14):3259-94
This investigation reports the preparation of a series of well-defined Poly(methyl methacrylate)-b-poly(hexyl acrylate)-b-poly (methyl methacrylate) (PMMA-b-PHA-b-PMMA) triblock copolymers by Atom Transfer Radical Polymerization (ATRP). Their morphology, dynamic mechanical and tensile properties are thoroughly investigated. Phase separation is observed for all the above-mentioned triblock copolymers, which contain PMMA outer blocks in the molecular weight (Mn) range of 10,000-80,000 and PHA inner blocks with Mn in the range 20,000-40,000. The dynamic mechanical measurements essentially reveal two glass transitions and an intermediate flat rubbery plateau in between. Tensile studies indicate that as the PMMA content increases, there is an increase in tensile strength and decrease in elongation at break, which is the case for most of the thermoplastic elastomers (TPE). Eventually, the as prepared block copolymers (with PMMA content 50-80%) offer to be an effective stabilizer for preparing gold nanoparticle aggregates, the shape and size of which can be modulated by tuning the block copolymer composition. The formation of nanoparticle aggregates and their possible non-covalent interaction with the base polymer has been substantiated by UV-vis analysis, transmission electron microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering and Fourier transform infrared spectroscopy.  相似文献   

6.
Double-hydrophilic poly[(oligo(ethylene glycol) methacrylate)-co-methyl methacrylate]-b-poly(2-(diethylamino)ethyl methacrylate), P(EGMA-co-MMA)-b-PDEA, diblock terpolymers were designed and explored in aqueous media. Thanks to the thermosensitivity of the P(EGMA-co-MMA) statistical block and the pH sensitivity of the PDEA block, these terpolymers form two distinct micellar self-assemblies at different conditions of pH and temperature. The thermosensitivity of these terpolymers can be tuned by controlling the LCST of the statistical block through its monomer unit composition.  相似文献   

7.
Xiaoyi Sun  Xiaohua Huang  Qi-Feng Zhou 《Polymer》2005,46(14):5251-5257
The synthesis of ABC triblock copolymer poly(ethylene oxide)-block-poly(methyl methacrylate)-block-polystyrene (PEO-b-PMMA-b-PS) via atom transfer radical polymerization (ATRP) is reported. First, a PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of halo-terminated poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) diblock copolymers under ATRP conditions. Then PEO-b-PMMA-b-PS triblock copolymer was synthesized by ATRP of styrene using PEO-b-PMMA as a macroinitiator. The structures and molecular characteristics of the PEO-b-PMMA-b-PS triblock copolymers were studied by FT-IR, GPC and 1H NMR.  相似文献   

8.
The self-assembly and photophysical properties of a triblock copolymer with complex mid-block in THF and aqueous solution were investigated in this research. Poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(2-(dimethylamino ethyl methacrylate)-block- poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA–b–PDMAEMA–b–PPEGMA) triblock copolymer was synthesized by subsequent atom transfer radical polymerizations (ATRP) of DMAEMA and PEGMA. The PDMAEMA blocks were quaternized by a reaction with iodomethane. The complex of the positively charged PDMAEMA chain unit and sodium salt of 1-pyrenebutyric acid was prepared by mixing equimolar amount of the two components in THF/water mixture. Transmission electron microscopy and fluorescence technique results show that the triblock copolymer chains self-assemble into micelles in THF at high concentration. The critical aggregation concentration (CAC) of the triblock copolymer in THF determined by fluorescence technique is 6.8 × 10?5 M. The triblock copolymer was also able to self-assemble into micelles in water. The value of CAC of the triblock copolymer in water is 2.0 × 10?5 M. The photophysical properties and self-assembly structures of the triblock copolymer in aqueous solutions were influenced by added sodium chloride. After salt addition, a transition of the assembled structures from micelles to hollow structures was observed.  相似文献   

9.
Qun Zhao  Peihong Ni 《Polymer》2005,46(9):3141-3148
In this paper, the possibilities offered by oxyanion-initiated polymerization were exploited to tailor well-defined and near narrow-distribution poly[(dimethylamino)ethyl methacrylate]-b-poly(methyl methacrylate) (PDMAEMA-b-PMMA) AB or BA diblock copolymers that were initiated by potassium benzyl alcoholate (BzOK) and controlled by the sequential addition of the alternative monomers. To clarify the living mechanism for MMA and DMAEMA, a series of MMA and DMAEMA homopolymers with near narrow molecular weight distribution were prepared in our laboratory, respectively. If not quenched, the first living moiety could be subsequently used to yield block copolymers BzO-PDMAEMA-b-PMMA with adding the second feed of monomer to the living system. Using reverse succeeding addition of monomers, another benzyloxy-capped diblock copolymer, i.e. BzO-PMMA-b-PDMAEMA was obtained. The thorough characterization of all these diblock copolymers was investigated from 1H NMR measurement. The results indicated that the expected molecular structures have been obtained with a good correlation between original monomer-to-initiator molar ratios. GPC analysis showed that PDMAEMA homopolymer and the above mentioned two block copolymers possessed narrow molecular weight distribution in the range of 1.15-1.34, while PMMA homopolymer had a little broad molecular weight distribution of 1.29-1.60. This study shows further evidence that oxyanion-initiated polymerization is a control/‘living’ process, not only suitable for tertiary amino-substituted methacrylates, but also for methyl methacrylate. The critical micelle concentration (cmc) of the diblock copolymer BzO-PDMAEMA-b-PMMA in aqueous solution was attained by surface tension measurement. The effects of different lengths of two segments and pH values on the behavior of solution were investigated.  相似文献   

10.
Thermosensitive, biocompatible poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) (PCL-b-PVCL), poly(δ-valerolactone)-b-PVCL, and poly(trimethylene carbonate)-b-PVCL block copolymers were synthesized at 30 °C using a hydroxyl-functionalized xanthate reversible addition-fragmentation chain transfer (RAFT) agent, 2-hydroxyethyl 2-(ethoxycarbonothioylthio)propanoate (HECP), as a dual initiator for ring-opening polymerization (ROP) and RAFT polymerization in a one-pot procedure. The hydrophobic blocks were first synthesized by the ROP of cyclic monomers using diphenyl phosphate (DPP) as a catalyst and the RAFT polymerization of the PVCL block was followed by adding N-vinylcaprolactam (VCL) and 2,2′-azobis(4-methoxy-2,4-dimethyl valeronitrile) (V-70) as an initiator to the reaction mixture. This novel one-pot process is convenient and powerful method for the synthesis of the PVCL-based biocompatible block copolymers. The lower critical solution temperature (LCST) of the PVCL-based biocompatible block copolymer can be readily tuned by controlling the hydrophobicity of the block copolymers. By copolymerizing a hydrophilic N-vinylpyrrolidone moiety to the PVCL blocks by RAFT copolymerization, the LCST of the copolymer was matched with the body temperature for its future biomedical applications.  相似文献   

11.
Homopolymer brushes of poly(N,N-dimethylacrylamide) (PDMA), poly(methoxyethylacrylamide) (PMEA) and poly(N-isopropylacrylamide)(PNIPAM) grown on atom transfer radical polymerization (ATRP) initiator functionalized latex particles were used as macroinitiators for the synthesis of PDMA-b-PNIPAM/PMEA, PMEA-b-PDMA/PNIPAM and PNIPAM-b-PDMA block copolymer brushes by surface initiated aqueous ATRP. The grafted homopolymer and block copolymer brushes were analyzed for molecular weight, molecular weight distribution, chain grafting density, composition and hydrodynamic thickness (HT) using gel permeation chromatography-multi-angle laser light scattering, 1H NMR, particle size analysis and atomic force microscopy (AFM) techniques. The measured graft molecular weight increased following the second ATRP reaction in all cases, indicating the second block had been added. Chain growth depended on the nature of the monomer used for block copolymerization and its concentration. Unimodal distribution of polymer chains in GPC with non-overlap of molar mass-elution volume curves implied an efficient block copolymerization. This was supported by the increase in HT measured by particle size analysis, equilibrium thickness observed by AFM and the composition of the block copolymer layer by 1H NMR analysis, both in situ and on cleaved chains in solution. 1H NMR analysis of the grafted latex and cleaved polymers from the surface demonstrated that accurate determination of the copolymer composition by this method is possible without detaching polymer chains from surface. Block copolymer brushes obey the same power law dependence of HT on molecular weight as homopolymer brushes in good solvent conditions. The NIPAM-containing block copolymer brushes were sensitive to changes in the environment as shown by a decrease in HT with increase in the temperature of the medium.  相似文献   

12.
Zhi Ma 《Polymer》2004,45(20):6789-6797
Dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) has been successfully performed in supercritical carbon dioxide at P=370 bar and T=65 °C with azobis(isobutyronitrile) as initiator and a hydrophilic/CO2-philic poly(ethylene oxide)-b-poly(1,1,2,2-tetrahydroperfluorodecyl acrylate) (PEO-b-PFDA) block copolymer as steric stabilizer. The PEO-b-PFDA (2K/21K) block copolymer was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Spherical particles of poly(HEMA) were obtained in the range of 200-400 nm diameter size with a narrow particle size distribution (Dw/Dn<1.1). The effect of the stabilizer concentration on the dispersion polymerization was investigated from 20 w/w% down to 3.5 w/w% versus HEMA. Precipitation polymerization in the absence of stabilizer lead to the formation of large aggregates of partially coalesced particles whereas discrete spherical particles of poly(HEMA) were obtained by dispersion polymerization even at low concentration of PEO-b-PFDA (3.5 w/w% versus HEMA).  相似文献   

13.
Novel triblock-graft copolymers, poly ethylene glycol-b-[poly(ε-caprolactone)-g-poly(2-(2-methoxyethoxy) ethyl methacrylate-co-oligo (ethylene glycol) methacrylate)]-b-poly ethylene glycol (PEG-b-[PCL-g-P(MEO2MA-co-OEGMA)]-b-PEG) (tBG), were synthesized via ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). In the synthesis process, temperature responsive P(MEO2MA-co-OEGMA) chains were grafted onto the PCL block of triblock copolymer PEG-b-PCL-b-PEG to improve its hydrophilicity. This method succeeded in increasing the solubility of PEG-b-PCL-b-PEG in water, and more importantly, endowing PEG-b-PCL-b-PEG with temperature sensitivity. By adjusting the feed ratio of 2-(2-methoxy ethoxy) ethyl methacrylate (MEO2MA) and oligo (ethylene glycol) methacrylate (OEGMA) monomers, the lower critical solution temperature (LCST) of the tBG can be realized at about 37 °C. Taking advantage of the excellent mechanical property of graphene sheets, alkyne-functionalized graphene oxide (alkyne-GO) was introduced to cross-link tBGs and prepare tBG/GO composite hydrogel through click reaction between tBG-N3 and alkyne-GO. Different from traditional cross-linkers, alkyne-GO acts as reinforcing filler in the composite hydrogel. Benefiting from superior properties of PCL, PEG, P(MEO2MA-co-OEGMA) and GO, the as-prepared temperature responsive tBG/GO hydrogel exhibits excellent mechanical strength and toughness, demonstrating future potential applications in tissue engineering and biotechnology fields.  相似文献   

14.
Novel organosoluble fluorescent polynorbornenes with multi-functional armed structure were designed and prepared by using highly stable block macroinitiators via a combination of living ring-opening metathesis polymerization (ROMP) and atom transfer radical polymerization (ATRP). A bromo-containing functional norbornene (NBMBr) was prepared from the Diels-Alder reaction of cyclopentadiene and allyl bromide. The diblock copolymer of 5-(N-carbazolyl methyl)bicycle[2.2.1]hept-2-ene (CbzNB) and NBMBr was successfully prepared using living ROMP and used as a novel macroinitiator [poly(CbzNB-b-NBMBr)] for ATRP. Carbazoyl-containing multi-functional armed copolymer with poly(methyl methacrylate) (PMMA) was prepared by using poly(CbzNB-b-NBMBr) as a macroinitiator for ATRP. Strong fluorescence emissions (370-450 nm) were observed in the low excimer-forming multi-functional armed fluorescent polynorbornenes. The fact is that low excimer-forming carbazole-containing polymeric compound would apparently be favorable in photoconductive materials. The multi-functional armed structure make this compound an attractive candidate for applications as multi-modified hole transport materials in molecular electronic devices. Multi-modification could be further considered to be carried out by using such a functional bromo group at the end of multi-arms.  相似文献   

15.
Shan Qin 《Polymer》2011,52(4):1191-1196
Superstructured microspheres were prepared via a two-tier hierarchical assembly of a fluorine-containing diblock copolymer, poly(tert-butyl acrylate)-b-poly(2-[(perfluorononenyl)oxy]ethyl methacrylate) (PtBA-b-PFNEMA) with well controlled block lengths. At tier 1, water induced self-assembly of the diblock copolymer produced nanospheres of low dispersity with onion-like multilayer inside structures, which were the consequence of the gradual aggregation of the fluorinated segments by accessing the super-strong segregation regime. And both the size and inner structure could be tuned by changing the water addition rate. At tier 2, nanospheres with different sizes were chosen as the building blocks for the formation of closely packed superstructural microspheres through an evaporation assisted process. The packing rules were governed by the volatility distinction between THF and water, the dispersity of nanospheres, and other various forces, such as the capillary force.  相似文献   

16.
Thermo-responsive brush copolymers poly(methyl methacrylate (MMA)-co-2-(2-bromoisobutyryloxy)ethyl methacrylate (BIEM)-graft-(N-isopropyl-acrylamide) (NIPAAm)) were synthesized using Cu-mediated “living” radical polymerization (LRP) approach. Varied grafting densities of the brushes were obtained through adjusting backbone structure as random, gradient and block respectively. The effect of grafting densities on their thermo-responsive phase transition behaviors in aqueous solution and on surface were investigated in detail. The lower critical solution temperature (LCST) of brush copolymers in solution was adjusted as 35, 37 and 38 °C through random, gradient and block backbone structure respectively. Their structure tunable thermo-responsive phase transition in solution were further confirmed by the different micelle aggregation behaviors above LCST which monitored by transmission electron microscopy (TEM) images and dynamic light scattering (DLS). In addition, surfaces modified by the resulted brush copolymers have a temperature tunable wettability based on thermo-responsive phase transition in solid, the similar WCA variation range of three brush copolymers implies that the composition of backbone does not much affect the switchable wettability of surfaces.  相似文献   

17.
Dingsong Feng 《Polymer》2008,49(2):386-393
The convenient synthesis of methoxy-free 1,1-diphenylethylene end-functionalized polyisobutylene (PIB-DPE) has been accomplished by capping living PIB with 1,4-bis(1-phenylethenyl)benzene, followed by hydride transfer reaction with tributylsilane. The proposed method eliminates the need for methylation of the capped living PIB in which large excess of dimethylzinc must be used, resulting in a large amount of inorganic salt contamination. The obtained PIB-DPE was quantitatively lithiated with 1.5-fold excess n-butyllithium in tetrahydrofuran (THF) at room temperature. The methine proton at the chain end remained intact during the lithiation procedure. The resulting macroanion efficiently initiated the polymerization of alkyl methacrylates. Poly(methyl methacrylate) (PMMA)-b-PIB-b-PMMA, poly(2-hydroxyethyl methacrylate) (PHEMA)-b-PIB-b-PHEMA and poly(tert-butyl methacrylate) (PtBMA)-b-PIB-b-PtBMA have been prepared with high blocking efficiency by the proposed methodology. Complete hydrolysis of PtBMA-b-PIB-b-PtBMA into poly(methacrylic acid) (PMAA)-b-PIB-b-PMAA was realized in THF/1,4-dioxane, as confirmed by FTIR, 1H NMR, and DSC analyses.  相似文献   

18.
The dispersion of magnetic nanoparticles (NPs) in homopolymer poly(methyl methacrylate) (PMMA) and block copolymer poly(styrene-b-methyl methacrylate) (PS-b-PMMA) films is investigated by TEM and AFM. The magnetite (Fe3O4) NPs are grafted with PMMA brushes with molecular weights from M = 2.7 to 35.7 kg/mol. Whereas a uniform dispersion of NPs with the longest brush is obtained in a PMMA matrix (P = 37 and 77 kg/mol), NPs with shorter brushes are found to aggregate. This behavior is attributed to wet and dry brush theory, respectively. Upon mixing NPs with the shortest brush in PS-b-PMMA, as-cast and annealed films show a uniform dispersion at 1 wt%. However, at 10 wt%, PS-b-PMMA remains disordered upon annealing and the NPs aggregate into 22 nm domains, which is greater than the domain size of the PMMA lamellae, 18 nm. For the longest brush length, the NPs aggregate into domains that are much larger than the lamellae and are encapsulated by PS-b-PMMA which form an onion-ring morphology. Using a multi-component Flory-Huggins theory, the concentrations at which the NPs are expected to phase separate in solution are calculated and found to be in good agreement with experimental observations of aggregation.  相似文献   

19.
An amphiphilic block copolymer with photocleavable nitrobenzyl moieties in the side chain of the hydrophobic block was successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and the Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes. 2-(Trimethylsilyloxy)ethyl methacrylate (HEMATMS) was polymerized from a poly(ethylene oxide) (PEO) macroinitiator via ATRP, leading to a well-defined block copolymer of PEO113-b-PHEMATMS45 with low polydispersity index (PDI = 1.09). After the polymerization, trimethylsilyl (TMS) groups were deprotected and then functionalized in-situ with 3-azidopropionic chloride to yield PEO-b-[2-(1-azidobutyryloxy)ethyl methacrylate] (PEO-b-PAzHEMA). Alkyne-functionalized pyrene with a photocleavable 2-nitrobenzyl moiety was added to the PEO-b-PAzHEMA backbone via click chemistry to produce the desired block copolymer with high fidelity. The resulting block copolymer was self-assembled in water to yield spherical micelles with an average diameter of 60 nm. Upon UV irradiation, 2-nitrobenzyl moieties were selectively cleaved, leading to the release of a model drug, 1-pyrenebutyric acid. Coumarin 102, another model drug that was physically encapsulated in the core of micelles during micellization in water, was also released at the same time. The general strategy presented herein can potentially be utilized for the preparation of polymeric vehicles that are capable of delivering multiple therapeutics under controlled individual release kinetics.  相似文献   

20.
Juan Peng 《Polymer》2005,46(15):5767-5772
The dewetting pattern development of thin film of poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer has been studied after ‘annealing’ in the PMMA block selective solvent vapor. Initially, typical circular dewetted holes are observed. Further annealing, however, results in the formation of fractal-like holes. The heterogeneous stress induced by the residual solvent remaining in the film after spin-coating induces the anisotropy of the polymer mobility during the annealing process, which triggers the formation of the intriguing surface patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号