首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new synthetic procedure was elaborated allowing the preparation of semiaromatic dianhydride. N-Methyl protected 4-chlorophthalic anhydride was nitrated with HNO3 to produce N-methyl-4-chloro-5-nitrophthalimide (1). The aromatic nucleophilic substitution reaction between 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl-1,1-spirobisindane and 1 afforded spirobisindane-linked bis(N-methylphthalimide) (2), which was hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). The latter was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The properties of polyimides such as inherent viscosity, solubility, UV transparency and thermal stability were investigated to illustrate the contribution of the introduction of spirobisindane groups into the polyimide backbone. The resulting polyimides were readily soluble in polar solvents such as chloroform, THF and N-methyl-2-pyrrolidone. The glass-transition temperatures of these polyimides were in the range of 254-292 °C. The tensile strength, elongation at break, and Young's modulus of the polyimide film were 68.8-106.6 MPa, 5.9-9.8%, 1.7-2.0 GPa, respectively. The polymer films were colorless and transparent with the absorption cutoff wavelength at 286-308 nm.  相似文献   

2.
Treatment of a dihydrosilane (methylphenylsilane, 1) with mixtures of a diyne (p- or m-diethynylbenzene, 2a or 2b) and a triyne (1,3,5-triethynylbenzene, 3a or B,B′,B″-triethynyl-N,N′,N″-trimethylborazine, 3b; 1:2:3=100:95:5, 100:90:10, 100:80:20) in the presence of Pd-PCy3 (Cy=cyclohexyl) catalyst gave new crosslinked silylenedivinylene polycarbosilanes. In TGA the resulting crosslinked polymers tended to show higher Td5 values and higher char yields than the corresponding linear polymers. On the other hand, UV/vis absorption spectra of the crosslinked polymers obtained in the reactions of 2a or 2b with 3a exhibited increased broad peaks around 390 nm for 2a or 360 nm for 2b. Coincidently, their fluorescence spectra showed significant increase of the emission peaks in 400-550 nm. The crosslinked polymer derived from 2a and 3b, however, showed decrease of the absorption peak around 390 nm and profound depression of fluorescence peaks in 400-550 nm.  相似文献   

3.
A new class of soluble six-membered ring polynaphthalimides (PNIs) was synthesized from asymmetrical fluorinated naphthalene-substituted monomers. All the resulting PNIs were easily soluble in many organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), and chloroform. They also showed good thermal stability with glass transition temperature of 340-386 °C, 10% weight loss temperature in excess of 529 °C. Polyimide 3c could be solution-cast into tough and flexible film. The film had a tensile strength, elongation at break, and Young's modulus of about 117.6 MPa, 23.6%, and 1.77 GPa, respectively. The gas permeation property of the film of 3c was investigated with oxygen permeability coefficient (PO2=3.99) and permeability selectivity coefficient of oxygen to nitrogen (PO2/PN2=5.27). Therefore, these materials are expected to be a good alternative to PIs based on five-membered rings with applications in gas separation membranes.  相似文献   

4.
New electroluminescent polymers with various phenyl groups, poly[2-dimethyl(octyl)silyl-5-(4-(dimethyl(octyl)silyl)phenyl)-1,4-phenylenevinylene] (P1), poly[2,5-bis(4-(dimethyl(octyl)silyl)phenyl)-1,4-phenylenevinylene] (P2), poly[2,5-bis(9,9-dihexylfluorenyl)-1,4-phenylenevinylene] (P3), and poly[2,5-bis(4-(4-(2-etylhexyloxy)phenyl)phenyl)-1,4-phenylenevinylene] (P4), have been synthesized by the Gilch polymerization. The maximum absorption peaks of P1-P4 appeared at 388-423 nm in THF solution, and are red-shifted to 404-425 nm in solid thin film. The photoluminescence (PL) emission spectra of P1-P4 show a maximum peak at 482-503 nm in THF solution and at 521-549 nm as the solid film state. The emission spectra in the solid film state are more red-shifted over 40 nm, and the full width at half maximum (fwhm) was 30 nm greater than the solution conditions. The polymer light-emitting diodes (PLEDs) with the configuration of ITO/PEDOT/polymer/Al emitted light with maximum peaks at around 517-546 nm. The various phenyl substituents, with intermolecular interactions in the solid film state, can introduce the color tuning and device performance enhancement of the conjugated polymer as an emissive layer in PLED.  相似文献   

5.
A new synthetic method for the preparation of poly(benzoxazole) (PBO) precursor, poly(o-hydroxyamide) (7) from bis(o-aminophenol) (5) and diphenyl isophthalate (6) has been developed. Polymer 7 was prepared by the polycondensation of 5 and 6 in 1-methyl-2-pyrrolidinone (NMP) at 185-205 °C. Model reactions were carried out in detail to elucidate appropriate conditions for the formation of 2-hydroxybenzanilide (3) from o-aminophenol (1) and phenyl benzoate (2). The photosensitive (PBO) precursor based on polymer 7 containing a 22% of benzoxazole unit and 30 wt% 1-{1,1-bis[4-(2-diazo-1-(2H)naphthalenone-5-sulfonyloxy)phenyl]ethyl}-4-{1-[4-(2-diazo-1(2H)naphthalenone-5-sulfonyloxy)phenyl]methylethyl}benzene (S-DNQ) showed a sensitivity of 110 mJ cm−2 and a contrast of 5.0 when it was exposed to 436 nm light followed by developing with a 2.38 wt% aqueous tetramethylammonium hydroxide solution at room temperature. A fine positive image featuring 8 μm line and space patterns was observed on the film of the photoresist exposed to 200 mJ cm−2 of UV-light at 436 nm by the contact mode.  相似文献   

6.
4-Vinylbenzyl glucoside peracetate (1) was copolymerized with divinylbenzene (DVB) using 1-phenyl-1-(2′,2′,6′,6′-tetramethyl-1′-piperidinyloxy)ethane (2) as an initiator in m-xylene at 138 °C for 20 h ([DVB]/[2]=28; [DVB]=0.62 mol L−1). The copolymerizations were performed using the mole fraction of 1 in the total feed of 1 and DVB (F1: [1]/[1]+[DVB]) ranging from 0.11 to 0.38 that produced the polystyrene (PSt) microgel with acetyl glucose, 3, in 46-53% yields. Dynamic laser light scattering (DLS) measurements showed that 3 was stably suspended in toluene as particles with average diameters (d's) ranging from 12 to 22 nm. A static laser light scattering (SLS) measurement gave the average molar mass, Mw,SLS, of 3 that ranged from 9.69×104 to 6.96×105. The numbers of the 1, 2, and DVB units in 3 (N1, N2, and NDVB, respectively) were from 111 to 238, from 17 to 208, and from 350 to 4510, respectively. The deacetylation of 3 was achieved by treatment with sodium methoxide in dry 1,4-dioxane to produce the PSt microgel with glucose as the hydrophilic segment, 4. The solubilities of 4 in toluene, CHCl3, THF, 1,4-dioxane, pyridine, DMF, DMSO, and H2O, and the mixture of H2O and 1,4-dioxane were examined, indicating that a hydrophilic property had been effectively introduced into 4.  相似文献   

7.
To investigate the difference of the trifluoromethyl (CF3) group and ether group affecting the optical property of fluorinated polyimides (PIs), we prepared 4,4′-bis(4-amino-2-trifluoromethylphenoxy)diphenyl ether (4) with three ether groups and 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]hexafluoropropane (5) with four CF3 groups with 2-chloro-5-nitrobenzotrifluoride and 4,4′-dihydroxydiphenyl ether or 2,2-bis(4-hydroxyphenol)hexafluoropropane. Two series of organosoluble and light-colored PIs (4a-4c, 5a-5c) were synthesized from 4 and 5 with various aromatic dianhydrides: 3,3,4,4-benzophenonetetracarboxylic dianhydride (BTDA) (a), 4,4-oxydiphthalic anhydride (ODPA) (b), and 4,4-hexafluoroisopropylidenediphthalic anhydride (6FDA) (c), prepared through a typical two-step polymerization method. These PIs were soluble in amide polar solvents and even in less polar solvents. The glass-transition temperatures (Tg) of 4a-5c were 221-249 °C and the 10% weight-loss temperatures were above 530 °C. Their films had cutoff wavelengths between 339 and 399 nm and yellowness index ranges from 1.95 to 42.60. The dielectric constants estimated from the average refractive indices are 2.59-2.93 (1 MHz). In a comparison of the PI series based on 4, 5, and 4,4′-bis(4-amino-2-trifluoromethylphenoxy)biphenyl (6), we found that the CF3 group and ether group on the diamine had almost same effect in lowering the color, but the ether group had better thermal stability. The color intensity of the three PI series was lowered in the following order: 6 > 4 > 5. The PI 5c, synthesized from diamine 5 and dianhydride c, had six CF3 groups in a repeated segment and ether group at the same time, so it exhibited the lightest color among the three series.  相似文献   

8.
Toru Katsumata 《Polymer》2008,49(12):2808-2816
The polymerization of diphenylacetylene derivatives possessing tert-amine moieties, such as triphenylamine, N-substituted carbazole and indole, was examined in the presence of TaCl5-n-Bu4Sn (1:2) catalyst. A polymer with high molecular weight (Mw = 570 × 103) was obtained in good yield by the polymerization of diphenylamine-containing monomer 1b, whereas the isopropylphenylamine derivative (1c) gave a polymer with relatively low molecular weight (Mw = 2.4 × 103). The polymerization of monomer 1d containing cyclohexylphenylamine group did not proceed; however, carbazolyl- and indolyl-containing monomers also produced polymers. Poly(1b), poly(2f) and poly(4b) could be fabricated into free-standing membranes by casting toluene solutions of these polymers. The gas permeability of poly(1b) was too low to be evaluated accurately whereas poly(4b) possessing two chlorine atoms in the repeating unit showed higher gas permeability than that of poly(1b); furthermore, poly(2f) having trimethylsilyl and 3-methylindolyl groups exhibited relatively high gas permeability (). In the cyclic voltammograms of diphenylamino group-containing polymers, poly(1b) and poly(2b), the intensities of oxidation and reduction peaks decreased more than those of carbazolyl-containing poly(2a). The molar absorptivity (?) of poly(1b) at ∼700 nm increased with increasing applied voltage in the UV-vis spectrum.  相似文献   

9.
A series of high molecular weight, sulfonated polyimide copolymers (8a-f) with controlled acid contents have been obtained using 2,2′-bis(4-sulfobenzyloxy)benzidine (14) prepared via a flexible synthetic route. This series of novel sulfonated polyimide membranes were found to possess higher hydrolytic stability than polyimides in which the sulfonic acid groups are bound directly to the polymer main chain. An in-depth analysis of conductivity data was also performed for 8 and compared to the results for Nafion® (1), sulfonated poly(ether ether ketone) (2) and a main-chain sulfonated polyimide (3). In order to remove the influence of acid strength, the proton mobility value for 8 at infinite dilution was calculated and found to be 1.2(±0.6) × 10−3 cm2 s−1 V−1. A catalyst-coated membrane (CCM)-MEA based on a polyimide incorporating 60% sulfonated monomer (8d) was found to exhibit comparable beginning-of-life fuel cell performance as a Nafion®-based CCM MEA at 50 °C.  相似文献   

10.
Chin-Ping Yang  Yu-Yang Su 《Polymer》2005,46(15):5778-5788
A series of polyimides IIIa-h characterized by colorlessness, high transparency, high solubility, and good mechanical property, was synthesized from the aromatic dianhydride, 2,5-bis(3,4-dicarboxyphenoxy)-t-butylbenzene dianhydride (I), and various aromatic diamines (IIa-h) with pendent trifluoromethyl group via polyaddition, chemical imidization, and direct cast films. The III series showed more colorless than the polyimides (V and VI series) of 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) contained, the VI series was synthesized from the II with 6FDA. These films III had cut-off wavelengths between 371 and 376 nm, as well as b* value (a yellowness index) ranging from 3.0 to 4.7. In fact, it is so far the most colorless aromatic polyimide in our systematical researches. The III series had inherent viscosity ranging from 0.72 to 1.33 dL/g and showed excellent solubility in a variety of organic solvents. They were soluble in a concentration of 5-10% in the amide polar solvent, ether solvent, and chlorinated solvent. These films showed strength tensile of 97-123 MPa, dielectric constants of 2.78-3.28 (1 MHz), and moisture absorptions of 0.11-0.36 wt%. The glass transition temperature of the III series was recorded at 214-259 °C, the 10% weight loss temperature was over 468 °C, and the residue was more than 47% at 800 °C in nitrogen.  相似文献   

11.
C.P Yang  Y.Y Su 《Polymer》2003,44(20):6311-6322
A colorless fluorinated diamine, 3′-trifluoromethyl-3,4′-oxydianiline (3′-CF3-3,4′-ODA) (II) was prepared through the nucleophilic substitution reaction of 3-nitrophenol and 2-chloro-5-nitrobenzotrifluoride by catalytic reduction with hydrazine and Pd/C. A series of Polyimides V were synthesized from the diamine II with various aromatic dianhydrides IIIa-f via thermal and chemical imidization. These polyimides had inherent viscosities ranging from 0.88 to 1.12 dl/g. A comparison of V, VI to analogous polyimides VII, VIII. VI, VII and VIII was based on 3′4-ODA, 3-CF3-4,4′-ODA, 4,4′-ODA, respectively. In terms of the color of PI revealed that the color intensity of phenoxy-containing amine of the meta-structure and the para-structure with the CF3 group would fell off color intensity. The color intensity of the four polyimide series was lessened in the following order: V>VII>VI>VIII. The solubility of V is better than VI, VII and VII. The polyimide V films had a tensile strength ranging from 124 to 147 MPa, elongation at break from 9 to 65%, and initial modulus from 2.3 to 2.8 GPa. The glass transition temperature of polymers was recorded at 234-313 °C. They had 10% weight loss at a temperature above 515 °C and left more than 50% residue even at 800 °C in nitrogen. Compared with polyimides VI, V showed the lower dielectric constants of 2.80-3.50 (40 MHz), and moisture absorptions in the range of 0.44-1.02 wt%.  相似文献   

12.
A series of novel amphiphilic fluorescent CBABC-type pentablock copolymers (Py-PMMA-PEG4600-PMMA-Py) were prepared from BAB-type amphiphilic triblock copolymer (PMMA-PEG4600-PMMA) as macroinitiator with various contents of 1-(methacryloyloxyethylamino-carboxylmethyl) pyrene (PyMOI) by atom transfer radical polymerization (ATRP) in toluene using CuBr/2,2-bipyridine as catalyst system. Triblock copolymer (PMMA-PEG4600-PMMA) was prepared by ATRP and obtained from Br-PEG4600-Br as macroinitiator with methyl methacrylate in tetrahydrofuran using the same catalyst. The molecular weights of pentablock copolymers which were reinitiated by PMMA-PEG4600-PMMA macroinitiator were calculated from 1H NMR spectra up to 42,400 gmol−1. The polydispersity of pentablock copolymers obtained from GPC analysis was narrow between 1.10 and 1.38. The crystallinity of triblock copolymer (PMMA-PEG4600-PMMA) was decreased slightly with incorporating PMMA segment. Introducing the bulky pyrene substituent into pentablock copolymer, the melting temperature was not observed and all pentablock copolymers showed amorphous patterns in wide-angle X-ray scattering (WAXS) due to decrease in the degree of crystallinity of polymer chain because of disturbing regular packing. The temperatures at 10% weight loss (Td10), examined by TG analysis, showed values ranging from 265 to 323 °C in nitrogen and 264 to 313 °C in air. Fluorescence spectra of Py-PMMA-PEG4600-PMMA-Py exhibited stronger excimer emission at ca. 480 nm due to the aggregations of pyrene group formed via interaction of the hydrophobic chains. The more content of PyMOI segment in pentablock copolymers can obtain the higher emission intensity ca. 480 nm. When there were higher PyMOI contents (84.9 wt% PyMOI) in pentablock copolymers, they formed larger aggregates (210 nm) in SEM micrographs. On the other hand, while increasing the concentration of the polymer solution in THF, the morphology was changed from spherical (0.1 mg/mL) to chainlike (1.0 mg/mL) aggregates.  相似文献   

13.
A series of novel organosoluble polyimides and copolyimides with a propeller-shaped triarylamine unit were prepared from diamine and various aromatic dianhydrides via direct polycondensation. All of the polymers possessed tough, flexible, and strong films with high molecular weights. The polyimide and copolyimide films revealed electrochromic characteristics, with a color change from pale yellowish at its neutral state, to green, and finally to blue at its oxidized state, at applied potentials ranging from 0 to 1.50 V. The polyimide (Ib) film exhibited switching times of 4.5 s at 1.08 V at 424 and 877 nm and 1.9 s for fast bleaching due to a pendent substituted 2-phenyl-2-isopropyl group. Cyclic voltammetry (CV) of the polymer films showed two reversible redox couples at potentials of 0.91-0.99 V and 1.30-1.38 V, respectively. The CV results of the model compound M1 and model polyimide M2, were not a match to the oxidation peaks of polyimide Ib, indicating that the contribution of the oxidation was not only from the electron removal of nitrogen atoms.  相似文献   

14.
New aromatic diamine with cyclohexane cardo group substituted with trifluoromethyl group in the side chain, 1,1-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]cyclohexane (II), was prepared through the nucleophilic substitution reaction of 1,1-bis(4-hydroxyphenyl)cyclohexane and 2-chloro-5-nitrobenzotrifluoride in the presence of potassium carbonate, to yield the intermediate dinitro compound I, followed by catalytic reduction with hydrazine and Pd/C to afford the diamine II. Fluorinated polyimides (IVa-g) were prepared from the II with various aromatic dianhydrides via thermal or chemical imidization of poly(amic acid). These polyimides had inherent viscosity ranging from 0.72 to 1.16 dl/g and showed excellent solubility in a variety of organic solvents. They were soluble in a concentration of 10% in the amide polar solvent, and 1-5% in the other testing solvents. IV films showed good mechanical properties, excellent thermal stability. The 10% weight loss temperature was above 476 °C in nitrogen or air, and the glass transition temperature was recorded at 214-278 °C. In comparison of the IV series with the analogous nonfluorinated polyimides (V series) based on 1,1-bis[4-(4-aminophenoxy)phenyl]cyclohexane (II′), IV series revealed better solubility, lighter-colored and lower dielectric constants and moisture absorptions. Their films had cut-off wavelengths in the range of 364-414 nm, b* value (a yellowness index) ranging from 3.3 to 66.3, dielectric constants of 3.02-3.55 (1 MHz), with moisture absorption of 0.16-0.36 wt%.  相似文献   

15.
Polycondensation by Stille coupling of 2-decyl-4,7-dibromobenzimidazoles and N-methyl-2-decyl-4,7-dibromobenzimidazole with 2,5-bis(trimethylstannyl)thiophene and 5,5′-bis(trimethylstannyl)-2,2′-bithiophene gave the corresponding π-conjugated polymers, poly(2-decylbenzimidazole-4,7-diyl-thiophene-2,5-diyl) 1b, poly(2-decylbenzimidazole-4,7-diyl-bithiophene-2,5-diyl) 1c and poly(N-methyl-2-decylbenzimidazole-4,7-diyl-thiophene-2,5-diyl) 2b, in 98-99% yields. The polymers 1b and 2b were fully soluble in CF3COOH, and partially soluble in DMF (about 60 and 40% for 1b and 2b, respectively) and NMP (about 70 and 40%, respectively). The NMP soluble part of 1b and DMF soluble part of 2b gave values of 0.36 and 0.24 dl g−1 in NMP and DMF, respectively. The DMF soluble part of 1b, 1c and 2b showed absorption peaks at about 458, 465 and 388 nm, respectively, in DMF. In an alkaline medium the absorption peaks of 1b and 1c are shifted to a longer wavelength by 92-101 nm; the observed shifts in the acidic medium and alkaline medium were much larger than those observed with usual benzimidazoles with low molecular weights. Packing structures of 1b, 1c and 2b are discussed based on their XRD patterns.  相似文献   

16.
Jinqing Qu  Toshio Masuda 《Polymer》2006,47(19):6551-6559
Novel acetylene monomers containing N-phenyl-substituted carbazole (Cz) and triphenylamine (TPA) groups, namely, 3-ethynyl-9-phenylcarbazole (1) and p-(N,N-diphenylamino)phenylacetylene (2) were synthesized, and polymerized with several Rh-, W-, and Mo-based catalysts. Poly(1) and poly(2) with high number-average molecular weights (15?500-974?000) were obtained in good yields (77-97%), when [(nbd)RhCl]2-Et3N (nbd = norbornadiene) was used as a catalyst. The polymers exhibited UV-vis absorption peaks derived from the Cz and TPA moieties at 250-350 nm and polyacetylene backbone above 350 nm. The UV-vis absorption band edge wavelengths of the polymers were longer than those of the corresponding monomers. Poly(2) exhibited a UV-vis absorption peak at a longer wavelength than poly(1) did, which indicates that poly(2) has main chain conjugation longer than that of poly(1). The molecular weights and photoluminescence quantum yields of the polymers obtained by the polymerization using [(nbd)RhCl]2-Et3N were larger than those of the Rh+(nbd)[η6-C6H5B(C6H5)3]-based counterparts. The cyclic voltammograms of the polymers indicated that they had clear electrochemical properties; the onset oxidation voltage of poly(1) was higher than those of N-alkyl-substituted Cz derivatives. The polymers showed electrochromism and changed the color from pale yellow to blue by application of voltage, presumably caused by the formation of charged polaron at the Cz and TPA moieties. The temperatures for 5% weight loss of the polymers were around 350-420 °C under air, indicating the high thermal stability.  相似文献   

17.
Novel chalcones (3-phenyl-1-phenylprop-2-en-1-ones) substituted on one end (position 3) with electron donating diphenylaminophenyl substituent and on the other end (position 1) with thiophenes with variable electronic effects (CH-1-CH-5) were prepared. The spectral properties of these molecules in solvents such as chloroform, cyclohexane, acetonitrile, methanol and incorporated into polymer matrices of polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(vinyl chloride) (PVC) were compared with those of 3-[4-(N,N-dimethylamino)-phenyl]-1-phenylprop-2-en-1-one (CH-1m) and 3-[4-(N,N-dimethylamino)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (CH-2m). The longest wavelength absorption band of model chalcones CH-1m and CH-2m was in the range of 400-420 nm and did not appear to be influenced by the medium. The fluorescence increased with the addition of acetonitrile, while it was effectively quenched in methanol. The strong electron-attracting nitro group quenched the fluorescence of CH-2m in nearly all solvents. In contrast, the fluorescence became more intense when the molecule was incorporated in a polymer matrix. The longest wavelength absorption band of novel chalcones was observed in the range of 410-450 nm in all media. The fluorescence of chalcones was red-shifted to the range of 530-575 nm and was most intense in chloroform. The quantum yield of fluorecence was the highest in chloroform for the chalcone with a methyl-thiophene (0.49) and low for the chalcone with a fluorenyl-thiophene group (0.07). The fluorescence of all chalcones (CH-1-CH-5) was effectively quenched in polar acetonitrile and methanol, and was less intense relative to chloroform when incorporated into a polymer matrix and more intense relative to other solvents. The lifetime of fluorescence was in the range of 1-4 ns. The Stokes shift was in the range of 4000-5000 cm−1 in chloroform, and lower in all other media. The spectral behavior of model chalcones CH-1m and CH-2m and novel chalcones with diphenylamino substituents was similar, producing observable fluorescence in several polymer matrices. The effect of the solvent on the fluorescence is discussed in terms of negative and positive solvatokinetic effects.  相似文献   

18.
Propylene was polymerised with novel combination metallocene catalyst systems prepared by an emulsion-based heterogenisation method in liquid monomer conditions. The catalyst combinations investigated were rac-dimethylsilanylbis(2-methyl-4-phenyl-1-indenyl)zirconium dichloride/rac-[ethylenebis(2-(tert-butyldimethylsiloxy)indenyl)]zirconium dichloride/methylaluminoxane (MAO) (1 + 2) and rac-dimethylsilanylbis(2-methyl-4-phenyl-1-indenyl)zirconium dichloride/rac-dimethylsilanylbis(2-isopropyl-4-[3,5-dimethylphenyl]indenyl)zirconium dichloride/MAO (1 + 3). The effects of polymerisation temperature and hydrogen on catalyst performance and polymer properties, as well as copolymerisation with hexene and ethylene were investigated. Depending on the polymerisation conditions, Mw of polypropylene varied from 144 to 286 kg/mol for 1 + 2 and from 200 to 390 kg/mol for 1 + 3. Combination 1 + 2 produced broader molecular weight distribution (MWD) than 1 + 3, and a bimodal MWD with clearly separated low- and high-Mw polymer fractions was observed with 1 + 2. The two catalyst systems showed similar hydrogen and hexene responses. Each metallocene precursor showed individual response towards the polymerisation conditions, especially polymerisation temperature, suggesting that interaction between the catalyst active sites was negligible in the studied systems.  相似文献   

19.
Chin-Ping Yang  Yu-Yang Su 《Polymer》2005,46(15):5797-5807
A series of organosoluble and light-colored polyimides (III) was prepared from 2,3,3′,4′-biphenyltetracarboxylic dianhydride (α-BPDA) with various fluorinated aromatic bis(ether amine)s via two-step method with thermal or chemical imidization of poly(amic acid)s yielded polyimides. The III series had inherent viscosity of 0.74-1.01 dl/g and showed excellent solubility in a variety of organic solvents. They were soluble in the amide polar solvent, ether-type solvent, and chlorinated solvent. These polyimide films also showed a high optical transparency and less color intensity, with an ultraviolet-visible absorption edge of 369-382 nm and low b* values (a yellowness index) of 5.0-11.7. Glass-transition temperature of the III series was recorded at 244-319 °C and higher than the isomeric polyimides V series. Compared with the nonfluorinated polyimides IV, the III series showed lighter-colored and lower dielectric constants and moisture absorptions. The good tensile properties and excellent thermal properties of the III series were also observed.  相似文献   

20.
Chin-Ping Yang 《Polymer》2006,47(20):7021-7033
Two series of novel polyimides (5a-g and 6a-g) containing flexible ether linkages and pendent trifluoromethyl (CF3) groups were synthesized from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (3a) and 1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride (3b) with various CF3-substituted aromatic bis(ether amine)s (4a-g) via ring-opening polyaddition to poly(amic acid)s, followed by thermal or chemical imidization. These polyimides were readily soluble in a variety of organic solvents and could be solution-cast into flexible and tough films. The cast films exhibited high optical transparency and almost no color, with a UV-vis absorption edge of 368-382 nm and a very low b value (a yellowness index) of 6.2-15.5. They had good thermal stability with glass-transition temperatures of 186-288 °C, and most of them did not show significant decomposition before 500 °C. Moreover, these polyimide films also possessed low dielectric constants of 2.79-3.49 (at 1 MHz) and low water uptakes (<0.65 wt%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号