首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Hiroshi Kajioka  Ken Taguchi 《Polymer》2011,52(9):2051-9246
Molecular weight dependence of growth and morphology of spherulites of isotactic poly(butene-1), iPB-1, and those of the mixtures with atactic poly(butene-1), aPB-1, were examined by atomic force microscopy (AFM) and polarizing optical microscopy (POM) in order to examine the mechanism of the structural evolution by the branching and re-orientation of lamellar crystals at the growth front. The width of lamellar crystals and the characteristic size of the inner structure of spherulites decreased with increasing molecular weight. The result suggests that the mobility of the melt determines the sizes in spherulites and supports the growth front instability induced by a gradient triggering the branching. The sizes in the mixtures also decreased with increasing weight-averaged molecular weight, Mw. The size dependence in low Mw region, however, was too strong and that in high Mw was too weak in comparison with the predicted dependence for the prepared Mw. It has been concluded that the peculiar behaviors should be discussed with effective Mw influenced by the occurrence of separation and exclusion of non-crystallizing aPB-1 at the growth front.  相似文献   

2.
Hiroshi Kajioka 《Polymer》2010,51(8):1837-6705
The orientation of lamellar crystals in non-banded spherulites of it-polystyrene and it-poly(butene-1) was investigated by microbeam X-ray diffraction. The two-dimensional intensity map of diffraction enables us to examine the local orientation of lamellar crystallites in the non-banded spherulites. The obtained results indicated the re-orientation of crystallites in non-banded spherulites and confirmed our previous observation on the anisotropic birefringence of a group of crystal stacks by polarizing optical microscopy.  相似文献   

3.
Crystalline/crystalline binary blend films of microbial polyesters composed of poly[(R)-3-hydroxybutyrate-co-(R)-3hydroxyhexanoate] (P(3HB-co-3HH)) and poly[(R)-3-hydroxybutyrate] (P(3HB)) that exhibit a morphological change are prepared by solvent casting. Differential scanning calorimetry measurements indicate that P(3HB-co-3HH) and P(3HB) are miscible for all blend ratios because a single glass transition temperature is observed. Polarization optical microscopy is used to investigate the transition of spherulite morphology and measure the radial growth rate of spherulites in the blend films. P(3HB-co-3HH) and P(3HB) contain positive spherulites, whereas in the binary blends, spherulite morphology changes from positive to negative. This change is related to the different growth rates of P(3HB-co-3HH) and P(3HB) lamellar crystals. Partial enzymatic degradation of the film surfaces reveals that the lamellar crystals of negative spherulites are oriented both perpendicular and parallel to the radial direction of spherulites. A new growth mechanism for spherulites in crystalline/crystalline blends is constructed from the results obtained for the blend films.  相似文献   

4.
Polymeric and non-polymeric materials often crystallize as spherulites when crystallized from viscous melts or solutions at large undercooling. The essential component of a spherulite is fibrillar crystals that grow in predominantly radial directions and branch irregularly. We review the growth, branching and twisting of crystals in the light of theoretical and experimental advances of the last decade, while maintaining an appreciation for historical context.The crucial role of self-generated fields ahead of the crystal–melt interface is developed. Pressure gradients from volume contraction have been treated, as well as impurity gradients ahead of a growing crystal; fibril width W is predicted and found to be proportional to δ1/2, where the diffusion length δ = D/G, the quotient of diffusivity and growth rate, conveys the extent of the field gradient. Ribbon-like spherulite radii grow at a constant rate under diffusion-coupled interface control.Non-crystallographic branching is required to maintain the volume occupied by fibrillar crystals as the spherulite radius increases. Topological giant screw dislocations and induced nucleation at cilia tethered to crystals are observed mechanisms leading to branching normal to the wide dimension of lamellar crystals; but the relative importance of each of these is not yet established. Repetitive tip splitting by kinetic interface instability has been suggested as a branching mechanism in the wide dimension of lamellar crystals.Larger molecular mass reduces the spherulite growth rate, more so at low undercoolings, for reasons that remain unresolved. Miscible diluents often profoundly reduce G by lowering both thermodynamic driving force and local transport dynamics that govern the secondary nucleation rate. Spherulite blend morphology is linked to the competition between radial growth rate G and diffusivity D of the diluent, expressed as the diffusion length δ.Polymer crystals in which chain helices all have the same sense show banded spherulites, as do crystals in which the chain axes are not perpendicular to the basal surfaces. Recent analyses with optical birefringence and X-ray micro-diffraction support the presence of helicoidally twisted ribbons, although other structural arrangements have sometimes been revealed by microscopy. Assessments of twist directions in spherulites of chiral polymers point to unbalanced basal surface stress as the source of twisting, although a general mechanical analysis is lacking. Another twisting model employs regular arrays of isochiral giant screw dislocations; results are mixed for this model.  相似文献   

5.
The crystallization and morphology of some metallocene polyethylenes with well‐controlled molecular weight and branching content were investigated by DSC, WAXD, PLM and SALS. The banded spherulites observed in linear PE are not seen in crystallization of branched PEs. The small spherulites with small lamellae or fringed micelle crystals are formed when branching content is higher, as suggested by PLM and SALS. The expansion of the unit cell was observed by WAXD as the molecular weight and branching content increased. At even higher branching content (more than 7 mol%), a shrinkage of the unit cell was seen, probably due to a change of crystal morphology from lamellar‐like crystals to fringed micelle‐like crystals. Crystallization temperature, melting point and crystallinity are greatly decreased for branched PEs compared with linear PEs. The equilibrium melting temperature cannot be determined via the Hoffman–Weeks approach for branched PEs since Tm is always 5–6 °C higher than Tc and there is no intercept with the Tm = Tc line. Our results show a predominant role of branches in the crystallization of polyethylene. © 2003 Society of Chemical Industry  相似文献   

6.
Jong Kwan Lee 《Polymer》2007,48(10):2980-2987
The spherulite morphology and crystallization behavior of poly(trimethylene terephthalate) (PTT)/poly(ether imide) (PEI) blends were investigated with optical microscopy (OM), small-angle light scattering (SALS), and small-angle X-ray scattering (SAXS). Thermal analysis showed that PTT and PEI were miscible in the melt over the entire composition range. The addition of PEI depressed the overall crystallization rate of PTT and affected the texture of spherulites but did not alter the mechanism of crystal growth. When a 50/50 blend was melt-crystallized at 180 °C, the highly birefringent spherulite appeared at the early stage of crystallization (t < 20 min). After longer times, the spherulite of a second form was developed, which exhibited lower birefringence. The SALS results suggested that the observed birefringence change along the radial direction of the spherulite was mainly due to an increase in the orientation fluctuation of the growing crystals as the radius of spherulite increased. The lamellar morphological parameters were evaluated by a one-dimensional correlation function analysis. The amorphous layer thickness showed little dependence on the PEI concentration, indicating that the noncrystallizable PEI component resided primarily in the interfibrillar regions of the growing spherulites.  相似文献   

7.
E. Martuscelli  M. Pracella 《Polymer》1984,25(8):1097-1106
Results are reported on the influence of composition and molecular mass of components on the isothermal growth rate of spherulites, on the overall kinetic rate constant, on the primary nucleation and on the thermal behaviour of poly(ethylene oxide)/poly(methyl methacrylate) blends. The growth rate of PEO spherulites as well as the observed equilibrium melting temperatures decrease, for a given Tc or ΔT, with the increase of PMMA content.Such observations are interpreted by assuming that the polymers are compatible in the undercooled melt, at least in the range of crystallization temperatures investigated. Thermodynamic quantities such as the surface free energy of folding σe and the Flory-Huggins parameter χ12 have been obtained by studying the dependence of the radial growth rate G and of the overall kinetic rate constant K from temperature and composition and the dependence of the equilibrium melting temperature depression ΔTm upon composition, respectively.  相似文献   

8.
The influence of stereochemical composition of the radial growth rate of spherulites, the nucleation density, the overall rate of crystallization and the thermal behaviour of fractions of iPP samples synthesized with different catalyst systems (low, high and very high yield) was investigated. The study used 13C n.m.r., differential scanning calorimetry (d.s.c.) and optical microscopy. The 13C n.m.r. analysis showed that due to the presence of catalytic sites with different stereoregulating capability the catalyst system produces polypropylene with different stereoregularity. It was found that the growth rate of spherulites and the overall rate of crystallization are strictly related to the stereochemical structure of the polypropylene. Moreover, for the low yield iPP, phenomena of secondary crystallization were observed by Avrami analysis of the overall kinetics. Values of the equilibrium melting temperature (Tm), energy of nucleation (Δø1) and surface free energy of folding (σe) of iPP lamellar crystals have been determined according to the kinetic theory of polymer crystallization. The values of such thermodynamic quantities as well as the thermal behaviour of various iPP are strongly dependent upon the amount and distribution of configurational irregularities existing along the chains and upon the molecular mass distribution.  相似文献   

9.
Miscibility and crystallization behavior have been investigated in blends of poly(butylene succinate) (PBSU) and poly(ethylene oxide) (PEO), both semicrystalline polymers, by differential scanning calorimetry and optical microscopy. Experimental results indicate that PBSU is miscible with PEO as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer-polymer interaction parameter, obtained from the melting depression of the high-Tm component PBSU using the Flory-Huggins equation, is composition dependent, and its value is always negative. This indicates that PBSU/PEO blends are thermodynamically miscible in the melt. The morphological study of the isothermal crystallization at 95 °C (where only PBSU crystallized) showed the similar crystallization behavior as in amorphous/crystalline blends. Much more attention has been paid to the crystallization and morphology of the low-Tm component PEO, which was studied through both one-step and two-step crystallization. It was found that the crystallization of PEO was affected clearly by the presence of the crystals of PBSU formed through different crystallization processes. The two components crystallized sequentially not simultaneously when the blends were quenched from the melt directly to 50 °C (one-step crystallization), and the PEO spherulites crystallized within the matrix of the crystals of the preexisted PBSU phase. Crystallization at 95 °C followed by quenching to 50 °C (two-step crystallization) also showed the similar crystallization behavior as in one-step crystallization. However, the radial growth rate of the PEO spherulites was reduced significantly in two-step crystallization than in one-step crystallization.  相似文献   

10.
The superstructures of oxyethylene/oxybutylene block copolymers with different compositions and architectures (EmBn, BnEmBn and EmBnEm) were studied using polarized optical microscopy (POM). Several novel superstructures, such as fibril crystals and different frontiers of spherulites and crystallized regions, have been observed. It is found that the ability of forming spherulites is reduced with the decrease in the volume fraction of the crystallizable block. The unfavorable interaction between the blocks, which can be indicated by order-disorder transition temperature (TODT), also affects the formation of superstructure. The BnEmBn triblock copolymers exhibit the strongest ability of organization into spherulites, whereas the EmBnEm triblock copolymers show the weakest ability of organization into spherulites.  相似文献   

11.
The kinetics of lamellar crystallization in thin films of isotactic polystyrene have been determined using transmission electron microscopy. The morphological changes accompanying crystallization have also been investigated as a function of solvent, supercooling and strain prior to crystallization. Crystallization temperatures have been attained by both cooling from the melt and warming from the glass. Similar growth rates were obtained in both cases. The nucleation density of spherulites is difficult to control when warming from the glass but does depend on the solvent used in preparing the thin film. The rate of lamellar growth follows a ‘bell’ shaped curve versus crystallization temperature and the kinetics were analysed using the secondary nucleation theory of Hoffman and Lauritzen. The end surface free energy, δe, of the lamellar crystals was determined using the variation of lamellar thickness with supercooling.  相似文献   

12.
Crystal growth rates of syndiotactic polystyrene (sPS) and its blends with atactic polystyrene (aPS) at various temperatures (Tc) were measured using a polarized optical microscope (POM). In addition to the positively birefringent spherulites and axilites (P-spherulites and P-axilites) which are predominantly observed, small population of negatively birefringent spherulites (N-spherulites) is also detected in the neat sPS as well as in the sPS/aPS blends at a given Tc. Both P-spherulites and P-axilites possess a similar growth rate, whereas a smaller growth rate is found for N-spherulites at all Tc and samples investigated. Melting behavior of individual P- and N-spherulites was feasibly traced using hot-stage heating and a highly sensitive CCD through the decay of transmitted light intensity under cross-polars. Both P- and N-spherulites demonstrate exactly the same melting behavior under POM, which well corresponds to the differential scanning calorimetry measurements, suggesting no difference in lamellar thickness distribution or crystal perfection within P- and N-spherulites. Lamellar morphologies within spherulites were extensively investigated using transmission electron microscopy (TEM) as well as scanning electron microscopy (SEM). Results obtained from TEM and SEM show that the lamellar stacks within P-spherulites grow radially, whereas those within N-spherulites are packed relatively tangentially. The growth of P-spherulites is associated with the gradual increase of lamellae' lateral dimensions which follows the conventional theory of growth mechanism. However, the measured growth rate of N-spherulites is relevant to the gradual deposition of new lamellar nuclei adjacent to the fold surfaces of already-existing lamellar stacks. The difference in measured growth rate between P- and N-spherulites is attributed to the different energy barrier required to develop stable nuclei. Based on the exhaustive TEM and SEM observations, plausible origin of N-spherulites is provided and discussed as well.  相似文献   

13.
The liquid-liquid (L-L) phase separation and crystallization behavior of poly(ethylene terephthalate) (PET)/poly(ether imide) (PEI) blend were investigated with optical microscopy, light scattering, and small angle X-ray scattering (SAXS). The thermal analysis showed that the concentration fluctuation between separated phases was controllable by changing the time spent for demixing before crystallization. The L-L phase-separated specimens at 130 °C for various time periods were subjected to a temperature-jump of 180 °C for the isothermal crystallization and then effects of L-L phase separation on crystallization were investigated. The crystal growth rate decreased with increasing L-L phase-separated time (ts). The slow crystallization for a long ts implied that the growth path of crystals was highly distorted by the rearrangement of the spinodal domains associated with coarsening. The characteristic morphological parameters at the lamellar level were determined by the correlation function analysis on the SAXS data. The blend had a larger amorphous layer thickness than the pure PET, indicating that PEI molecules in the PET-rich phase were incorporated into the interlamellar regions during crystallization.  相似文献   

14.
A series of branched poly(ethylene terephthalate) (BPET) samples were prepared from melt polycondensation by incorporation of various amount (0.4-1.2 mol%) of glycerol as a branching agent. These polymers were characterized by means of H1 NMR, intrinsic viscosity. The general crystalline and melting behavior was investigated via DSC. It was found that the crystalline temperature Tcc from the melt shifted to high temperature and the Thc from the glass got low for BPETs while the melting temperatures of BPETs kept almost unchanged. The kinetics of isothermal crystallization was studied by means of DSC and POM. It was found that the present branching accelerated the entire process of crystallization of BPETs, although prolonged the induced time. In addition, branching reduced nucleation sites; hence the number of nucleates for BPET got smaller. Therefore, more perfect geometric growth of crystallization and greater radius of spherulites could develop in BPET due to less truncation of spherulites.  相似文献   

15.
Lingyu Li  Chaoying Ni  Benjamin Hsiao 《Polymer》2007,48(12):3452-3460
Multi-walled carbon nanotubes (MWNTs) were modified with poly(hexamethylene adipamide) (also known as Nylon 66) via a controlled polymer solution crystallization method. A “nanohybrid shish kebab” (NHSK) structure was found wherein the MWNT resembled the shish while Nylon 66 lamellar crystals formed the kebabs. These Nylon 66-functionalized MWNTs were used as precursors to prepare polymer/MWNT nanocomposites. Excellent dispersion was revealed by optical and electron microscopies. Nitric acid etching of the nanocomposites showed that MWNT formed a robust network in Nylon 66. Non-isothermal DSC results showed multiple melting peaks, which can be attributed to lamellar thickness changes upon heating. The crystallite sizes L100 and L010 of Nylon 66, determined by WAXD, decreased with increasing MWNT contents. Isothermal DSC results showed that crystallization kinetics increased first and then decreased with increasing MWNT contents in Nylon 66. This study showed that the effect of MWNTs on Nylon 66 crystallization is twofold: MWNTs provide heterogeneous nucleation sites for Nylon 66 crystallization while the tube network structure hinders large crystal growth.  相似文献   

16.
The spherulitic morphology in poly(butylene succinate-co-butylene carbonate)/poly(l-lactic acid) (PEC/PLLA) blends was investigated by atomic force microscopy (AFM) to obtain direct evidence for the formation of interpenetrated spherulites (IPS), where the spherulites of PEC penetrate into PLLA spherulites. The observation actually revealed that PEC crystals penetrated into interfibrillar regions of edge-on lamellae in a PLLA spherulite. The penetration process was also investigated by AFM with a temperature controller. An edge-on PLLA lamella or a fibril that ran nearly perpendicular to the growth direction of a PEC spherulite obstructed the growth of PEC spherulite. The PEC crystals filled the blocked space after growing around the PLLA lamella. These results showed that the spherulites of PEC and PLLA grow on the same layer instead of forming a layered structure of two spherulites. All the results supported the formation of IPS.  相似文献   

17.
The relationship between retardation and morphology in highly birefringent poly(trimethylene terephthalate) spherulites was studied from the viewpoint of crystallization temperature dependence. Both the retardation and the morphology relate with the degree of orientation of the molecular chains. Therefore, the degree of orientation of the crystal lamellae was estimated by image processing of transmission electron microscope (TEM) images of the spherulite. It was found that the degree of orientation changed remarkably between the non-banded and the banded morphology and the temperature dependence of the degree of orientation correlated with that of the retardation. Based on the image-processed TEM images, it was recognized that the crystal lamellae formed bundles in the banded spherulite, while few bundled lamellae were observed in the non-banded ones. It is suggested that the formation of bundled lamellae played the significant role for both the magnitude of retardation and determination of the morphology; i.e. whether to form banded spherulites or non-banded ones.  相似文献   

18.
Jun Xu  Jian-Jun Zhou  Jing Wu 《Polymer》2005,46(21):9176-9185
Banded spherulites of pure poly(l-lactide) (PLLA) were observed via the ‘crystallization after annealing’ procedure, while only common spherulites were obtained via the ‘direct isothermal crystallization’ procedure. Wide angle X-ray diffraction revealed that the two types of spherulites had the same crystal lattice of α-modification. Atomic force microscopy demonstrated that the alternative negative and positive birefringent bands resulted from the alternative edge-on and flat-on lamellar orientations in the spherulites. Furthermore, the effect of thermal history on the spherulitic morphology was investigated in details. The PLLA samples melted for longer time or those with lower melting point were more likely to form banded spherulites. The possibility that the change of molecular weight was a determining factor of banding was excluded by the results on differently prepared samples with the same molecular weight. Therefore, we conclude that it was complete melting of the crystalline residues that favored formation of PLLA banded spherulites. Blending of PLLA with atactic poly(d,l-lactide) or poly[(R,S)-3-hydroxybutyrate], led to reduced band spacing. Effect of blending on the chain mobility, spherulite growth kinetics, supercooling and lamellar surface energy was quantitatively studied, which suggests that the blending-reduced band spacing cannot be attributed to the above factors. Therefore, there are other blending-relevant factors leading to the reduced band spacing.  相似文献   

19.
Ling Chang 《Polymer》2011,52(1):68-76
Effects of poly(3-hydroxybutyrate) (PHB) on crystalline morphology of stereocomplexing capacity of poly(L- and D-lactic acid) (PLLA and PDLA) were studied by differential scanning calorimetry (DSC), polarizing-light optical microscopy (POM), atomic-force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). When crystallized at high Tc (130 °C or above), morphology transition of stereocomplexed PLA (sc-PLA) occurs from original well-rounded Maltese-cross spherulites to dendritic form in blends of high PHB contents (50 wt.% or higher), where PHB acts as an amorphous species. Microscopy characterizations show that morphology of sc-PLA in PHB/sc-PLA blends crystallized at Tc = 170 °C no longer retain original complexed Maltese-cross well-rounded spherulites; instead, the spherulites are disintegrated and restructured into two types of dendrites: (1) edge-on feather-like dendrites (early growth) and (2) flat-on wedge-like crystal plates (later growth) by growing along different directions and exhibiting different optical brightness. The concentration and/or distribution of amorphous PHB at the crystal growth front, corresponding to variation of the slopes of spherulitic growth rates, is a factor resulting in alteration and restructuring of the sc-PLA spherulites in the blends. Despite of spherulite disintegration, WAXD result shows that these two PHB-induced dendrites still retain the original unit cells of complexes, and thus these two new dendrites are sc-PLA.  相似文献   

20.
Jingru Sun  Xiabin Jing 《Polymer》2004,45(17):5969-5977
Crystallization behavior, structural development and morphology evolution in a series of diblock copolymers of poly(l-lactide)-block-poly(ethylene glycol) (PLLA-b-PEG) were investigated via differential scanning calorimetry, wide-angle X-ray diffraction, polarized optical microscopy and atomic force microscopy. In these copolymers, both blocks are crystallizable and biocompatible. It was interesting that these PLLA-b-PEG diblock copolymers could form spherulites with banded textures, which was undercooling dependent. Single crystals with an abundance of screw dislocations were also observed via AFM. Such results indicated that these ringed spherulites and single crystals were formed during the crystallization of the PLLA blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号