首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jinqing Qu  Toshio Masuda 《Polymer》2006,47(19):6551-6559
Novel acetylene monomers containing N-phenyl-substituted carbazole (Cz) and triphenylamine (TPA) groups, namely, 3-ethynyl-9-phenylcarbazole (1) and p-(N,N-diphenylamino)phenylacetylene (2) were synthesized, and polymerized with several Rh-, W-, and Mo-based catalysts. Poly(1) and poly(2) with high number-average molecular weights (15?500-974?000) were obtained in good yields (77-97%), when [(nbd)RhCl]2-Et3N (nbd = norbornadiene) was used as a catalyst. The polymers exhibited UV-vis absorption peaks derived from the Cz and TPA moieties at 250-350 nm and polyacetylene backbone above 350 nm. The UV-vis absorption band edge wavelengths of the polymers were longer than those of the corresponding monomers. Poly(2) exhibited a UV-vis absorption peak at a longer wavelength than poly(1) did, which indicates that poly(2) has main chain conjugation longer than that of poly(1). The molecular weights and photoluminescence quantum yields of the polymers obtained by the polymerization using [(nbd)RhCl]2-Et3N were larger than those of the Rh+(nbd)[η6-C6H5B(C6H5)3]-based counterparts. The cyclic voltammograms of the polymers indicated that they had clear electrochemical properties; the onset oxidation voltage of poly(1) was higher than those of N-alkyl-substituted Cz derivatives. The polymers showed electrochromism and changed the color from pale yellow to blue by application of voltage, presumably caused by the formation of charged polaron at the Cz and TPA moieties. The temperatures for 5% weight loss of the polymers were around 350-420 °C under air, indicating the high thermal stability.  相似文献   

2.
Synthesis and properties of helical polyacetylenes containing carbazole   总被引:1,自引:0,他引:1  
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(2):467-476
Novel acetylene monomers containing carbazole with chiral menthyl and bornyl groups, 9-(1R,2S,5R)-menthyloxycarbonyl-2-ethynylcarbazole (1), 9-(1S,2R,5S)-menthyloxycarbonyl-2-ethynylcarbazole (2), 9-(1R,2S,5R)-menthyloxycarbonyl-3-ethynylcarbazole (3) and 9-(1S)-bornyloxycarbonyl-2-ethynylcarbazole (4) were synthesized and polymerized with a Rh catalyst to give the corresponding polymers [poly(1)-poly(4)] with moderate Mn value of (11.5-92.2) × 103 in good yields (77-89%). CD spectroscopic studies revealed that poly(1), poly(2) and poly(4) took predominantly one-handed helical structure in CHCl3, THF, toluene, and CH2Cl2, while poly(3) did not. Addition of methanol to CHCl3 solutions of poly(1) and poly(2) resulted in the formation of aggregates showing smaller CD signals at 275 and 320 nm. The helical structure of poly(1) and poly(2) was very stable against heating. The polymers emitted fluorescence in 0.40-2.90% quantum yields. Poly(4) exhibited an obvious oxidation peak at 1.10 V. The polymers were thermally stable below 300 °C.  相似文献   

3.
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(22):6491-6500
Pyrene-functionalized chiral methylpropargyl esters, (R)-3-butyn-2-yl-1-pyrenebutyrate [(R)-1], (S)-3-butyn-2-yl-1-pyrenebutyrate [(S)-1], (R)-3-butyn-2-yl-1-pyrenecarboxylate [(R)-2], and 3-butyn-2-yl-1-pyrenecarboxylate [(R,S)-2] were polymerized with (nbd)Rh+[η6-C6H5B(C6H5)3] to obtain the corresponding polymers with moderate molecular weights (Mn: 10?500-66?500) in good yields (82-97%). All the polymers were soluble in CHCl3, CH2Cl2, and THF. The polarimetric and CD spectroscopic data indicated that poly[(R)-1], poly[(S)-1], and poly[(R)-2] existed in a helical structure with predominantly one-handed screw sense in these solvents. The helical structure of poly[(R)-1] and poly[(S)-1] was stable upon heating and addition of MeOH, while that of poly[(R)-2] changed upon MeOH addition. The copolymerization of (R)-1 with (S)-1 was also conducted to obtain the copolymers satisfactorily. Poly[(R)-1], poly[(S)-1], and poly[(R)-2] emitted fluorescence smaller than the corresponding racemic copolymers. The fluorescence intensity was tuned by the addition of MeOH to THF solutions of the polymers.  相似文献   

4.
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(16):4628-4636
Novel chiral acetylene monomers bearing carbazole and triphenylamine groups, namely, (S)-3-butyn-2-yl 2-(9-carbazolyl)ethyl carbonate (1) and (S)-3-butyn-2-yl 4-(diphenylamino)benzoate (2) were synthesized, and polymerized with Rh+(nbd)[η6-C6H5B(C6H5)3] catalyst to give the corresponding polymers with moderate molecular weights (Mn 13.0 × 103 and 15.5 × 103) in good yields (86% and 88%). CD spectroscopic studies revealed that poly(1) and poly(2) took predominantly one-handed helical structure in CHCl3. The helical structures of poly(1) and poly(2) were very stable against heating and addition of MeOH. The solution of poly(1) and poly(2) emitted fluorescence in 0.52% and 7.2% quantum yields, which were lower than those of the corresponding monomers 1 and 2 (22.5% and 76.5%). The cyclic voltammograms of the polymers indicated that the oxidation potentials of the polymers were lower than those of the monomers. The polymers showed electrochromism and changed the color from pale yellow to pale blue by application of voltage, presumably caused by the formation of polaron at the carbazole and triphenylamine moieties. The onset temperatures of weight loss of poly(1) and poly(2) were 225 and 270 °C under air.  相似文献   

5.
Chih-Cheng Lee 《Polymer》2009,50(2):410-3317
A series of vinyl copolymers (PVKST12-PVKST91) and homoploymer PVST containing pendant hole-transporting 4-(4-oxystyryl)triphenylamine (12-100 mol%) and carbazole chromophores were synthesized by radical copolymerization and employed as host for Ir(ppy)3 phosphor to tune emission color. They were characterized using the 1H NMR, FT-IR, absorption and photoluminescence spectra, elemental analysis, GPC, cyclic voltammetric and thermal analysis (DSC, TGA). Their weight-average molecular weights (Mw) and decomposition temperatures (Td) were 1.46-5.68 × 104 and 356-399 °C, respectively. The HOMO levels of PVKST12-PVKST91 and PVST, estimated from the onset oxidation potentials in cyclic voltammograms, were −5.40 to −5.14 eV, which are much higher than −5.8 eV of the conventional host poly(9-vinylcarbazole) (PVK) owing to high hole-affinity of the 4-(4-oxystyryl)triphenylamine groups. Therefore, copolymers PVKST are effective in reducing hole-injection barrier between the PEDOT:PSS and emitting layer. Electroluminescent devices [ITO/PEDOT:PSS/PVKST:Ir(ppy)3:PBD/BCP/Ca/Al] using the hole-transporting PVKST as host were fabricated to tune the emission color. Their EL spectra showed a major emission at 515 nm and a minor peak at 435 nm attributed to Ir(ppy)3 and 4-(4-oxystyryl)triphenylamine, respectively. The C.I.E. 1931 coordinates shift from (0.29, 0.61) for PVK to (0.33, 0.42) for PVST with an increase in 4-(4-oxystyryl)triphenylamine content.  相似文献   

6.
The polymerization of a novel monomer p-(t-butyldimethylsiloxy)tolan (1) with TaCl5-n-Bu4Sn provided a high molecular weight polymer (poly(1)), whose Mw reached 4.0×106. The poly(1) membrane was prepared by the casting method, and converted into poly[(p-hydroxy)tolan] (poly(2)) with a mixture of trifluoroacetic acid/water. Whereas poly(1) dissolved in low polarity solvents such as toluene and chloroform, poly(2) was practically insoluble in any solvents, although it partly dissolved in methanol and ethanol. The onset weight loss temperatures of poly(1) and poly(2) in air were 320 and 360 °C, respectively, indicating fair thermal stability among substituted polyacetylenes. The oxygen permeability coefficients (PO2) of poly(1) was 150 barrers, which is relatively small among polytolan derivatives, while that of poly(2) was 8.0 barrers and smaller owing to the presence of polar hydroxyl groups.  相似文献   

7.
Optically active, polycarbodiimides 3(a, b & c) with pyridine pendant groups were synthesized using [(R) - 2,2′- binaphthoxy] (di-isopropoxy) titanium(IV) catalyst. The polymers were characterized by 1H and 13C NMR, and IR. Thermal stability of these polymers (up to 162 °C by TGA), allows thermally demanding chemical transformations on their side chains without decomposition. Advantages include fine-tunability of the other pendant group of the carbodiimide monomer. This allows one to optimize the properties of the polymer without undergoing copolymerization or further post-polymerization modifications. Borane (BH3) was coordinated to poly 3 (a & b) to prepare the functional polymers 4 (a & b) respectively. A strong IR signature peak at 2368 cm−1 supports BH3 coordination. Gravimetric analysis indicates 97-99% borane complexation of the pyridine units. In addition, the thermal stability increased to 194 °C in poly 4a is consistent with the incorporation of BH3 to the pendant pyridine of the helical polycarbodiimide 3a. Poly 4 (a & b) can be used as supported reagents and successfully reduced the carbonyl compounds (5 a-e) in moderate to excellent yields (60-100%) and are shown to be efficient, non-volatile, stable, and mild supported-reducing reagents. Upon completion of the reduction reaction, the polymer support was quantitatively recycled as required for a green solid catalyst support.  相似文献   

8.
Three new metal alkoxides, [(MMPEP)Al(μ-OCH2C6H4CH2Cl)]2 (1), [(MMPEP-H)Li·(BnOH)]2 (2) and [(MMPEP-H)Li·(HOCH2C6H4CH2Cl)]2 (3) (MMPEP-H2: 2,2′-methylene-bis{4,6-di(1-methyl-1-phenylethyl)phenol}) have been synthesized and characterized. Complex 1 was prepared by the reaction of [(MMPEP)Al(CH3)(Et2O)] with p-(chloromethyl)benzyl alcohol. Followed by the reaction of MMPEP-H2 with nBuLi, BnOH or p-(chloromethyl)benzyl alcohol was added to give complexes 2 and 3, respectively. Complex 1 has shown excellent catalytic activity towards ring-opening polymerization (ROP) of ?-caprolactone. Both complexes 2 and 3 are active for ROP of l-lactide. Block copolymers of poly(?-caprolactone)-b-polyacrylonitrile (PCL-b-PAN) and poly(l-lactide)-b-polyacrylonitrile can be synthesized by combining a technique of atom transfer radical polymerization (ATRP) and ROP using a double-headed initiator. Microphase-separated morphology of PCL-b-PAN has been observed by transmission electron microscopy, indicating the formation of self-assembled nanostructure.  相似文献   

9.
The copolymerization of ethylene with 8-triarylamine (TAA) substituted 1-octene monomers (TAA = triphenylamine (M1), N,N-diphenyl-m-tolylamine (M2), N,N-diphenyl-1-naphthylamine (M3)) using various types of group 4 single-site catalytic systems (Cp2ZrCl2 (C1), rac-EBIZrCl2 (C2), rac-SBIZrCl2 (C3), i-PrCpFluZrCl2 (C4), Me2Si(η5-C5Me4)(η1-N-tBu)TiCl2 (C5)) was investigated to prepare functionalized polyethylene with side-chain TAA groups. The metallocene/methylaluminoxane (MAO) catalytic systems (C1-C4) efficiently lead to the production of high-molecular-weight poly(ethylene-co-M1). While the C4/MAO catalytic system shows the highest comonomer response, the C5/MAO system exhibits the poor compatibility with the M1 comonomer. Copolymerization results of ethylene with M1-M3 using C4/MAO indicate that M1-M3 are well tolerated by both the cationic active species of C4 and MAO cocatalyst, giving rise to the copolymers with high levels of activity and molecular weight. Inspection of the aliphatic region of the 13C NMR spectra of the copolymers (P1-P3) having ca. 11 mol% of M1-M3, respectively, reveals the presence of isolated comonomer units with prevailing [EEMEE] monomer sequences in the polymer chain. UV-vis absorption and PL spectra exhibit an apparent low-energy band broadening for P1 and P2 indicative of intrachain aggregate formation. Whereas P2 and P3 undergo completely reversible one-electron oxidation process, P1 shows relatively poor oxidational stability.  相似文献   

10.
The polymerization of 1-β-naphthyl-2-[(p-trimethylsilyl)phenyl]acetylene (8a) with TaCl5-n-Bu4Sn in cyclohexane provided a high molecular weight polymer (9a) (Mw=3.4×106). The corresponding monomers having p-dimethyl-t-butylsilyl and p-dimethyl(10-pinanyl)silyl groups in place of p-trimethylsilyl group in 8a also polymerized in a similar way to give high molecular weight polymers (9b, 9c, respectively; Mw>1×106). All these polymers were soluble in many common solvents such as toluene and chloroform, and provided free-standing membranes by casting from toluene solution. The oxygen permeability coefficients (PO2) of 9a at 25 °C was as high as 3500 barrers. The membrane of poly(1-β-naphthyl-2-phenylacetylene) (10a) was prepared by desilylation of the membrane of 9a with trifluoroacetic acid. Polymer 10a was insoluble in any solvents, and showed high thermal stability (the onset temperature of weight loss in air ∼470 °C). The PO2 value of 10a reached 4300 barrers. Not only the membrane of 9c but also its desilylation product 10c exhibited large optical rotations ([α]D=+2924 and +9800°, respectively) and strong CD signals. This indicates that the membrane of 10c maintains the helical main chain conformation of 9c with a large excess one-handed helix sense.  相似文献   

11.
The synthesis and structural characterization of optically active copolymers such as poly[(S)-(+)-MCPP-co-(S)-MAP-N] and poly[(S)-(+)-MCPP-co-(S)-MAP-C] has been performed in order to obtain a multifunctional photonic material for chiroptical switches and for optical storage applications.The observed chiroptical properties suggest the presence of ordered chiral conformations at least for the chain segments of the macromolecules. Spectroscopic, thermal and chiroptical characterization of these copolymers demonstrate the occurrence of significant electronic interactions between the carbazole chromophores and the azobenzene moieties. The photoinduction of birefringence of copolymer films has been investigated in order to evaluate their behavior as a material for optical data storage. Surface-relief gratings (SRG) have also been inscribed on the material.The results are interpreted in terms of copolymer composition, cooperative behavior and conformational stiffness of the chromophoric co-units.  相似文献   

12.
João Carlos Ramos 《Polymer》2006,47(24):8095-8100
(R)-(−) (1) and (S)-(+)-2-(3′-Thienyl)ethyl N-(3″,5″-dinitrobenzoyl)-α-phenylglycinate (2) monomers were synthesized, characterized, and polymerized in chloroform using FeCl3 as an oxidizing agent. Molecular weights of 2.6 × 104 and 3.2 × 104 for poly1 and poly2, respectively, were determined by SEC analysis. FTIR spectra of the polymers indicated the coupling of monomers through the α positions. UV-vis spectra showed absorption bands at λmax = 226 and 423 nm for poly1 and poly2, ascribed to transitions of side groups and polythiophene backbone, respectively. Poly1 and poly2 remained stable up to 210 °C. At higher temperatures, a two step weight loss degradation process was observed for both polymers by TGA analysis. 1H NMR, in the presence of Eu(tfc)3, and optical rotation measurements indicate the chiral properties of the monomers 1 ([α]D28 = −76.2) and 2 ([α]D28 = +76.0), and the maintenance of chirality after polymerization (poly1 [α]D28 = −29.0 and poly2 [α]D28 = +28.4, c = 2.5 in THF). According to scanning electron microscopic analysis, the polymers are highly porous.  相似文献   

13.
Aromatic diamine-based benzoxazines and their high performance thermosets   总被引:1,自引:0,他引:1  
Four high-purity aromatic diamine-based benzoxazines (13-16), which could not easily be synthesized by traditional approaches, were successfully synthesized by a facile, widely useful three-step synthetic method using four typical aromatic diamines - 4,4′-diamino diphenyl methane (1), 4,4′-diamino diphenyl sulfone (2), 2,2-bis(4-(4-aminophenoxy)phenyl)propane (3), and bis(4-(4-aminophenoxy)phenyl)ether (4), respectively, as starting materials. The structures of the monomers (5-16) were confirmed by 1H, 13C, 1H-1H and 1H-13C NMR spectra. Their high performance thermosets, P(13-16), were obtained by thermal curing of benzoxazines (13-16), and their properties were studied and compared with polymer derived from bis(3,4-dihydro-2H-3-phenyl-1,3-benzoxazinyl)methane (F-a), a typical aromatic biphenol-based benzoxazine. Among the benzoxazines, 13 and F-a are constitutional isomers, but the Tg value and 5% decomposition temperature of P(13) are 53 and 111 °C, respectively, higher than those of P(F-a), demonstrating the power of the molecule-approach to enhance the thermal properties. Because of the large varieties of aromatic diamines, this approach can increase the molecule-design flexibility of benzoxazines.  相似文献   

14.
The bulk radical polymerizations of styrene (St) at 80-120 °C in the presence of 6-aza-7,7-dimethyl-9-hydroxyspiro[4.5]decane-6-yloxyl (1) and 1-aza-2,2-dimethyl-4-hydroxy[5.5]undecane-1-yloxyl (2) were studied. At 100 and 120 °C, the polymerizations were well controlled by those nitroxides to give poly(St)s with narrow polydispersities. On the other hand, the polymerization mediated by 2 at 80 °C showed a good ‘livingness’ of polymerization, but 1 had a poor ability to control the polymerization to give poly(St) with a broad polydispersity of 1.52. The rate constants (kact) for the homolysis of the NO-C bond of the alkoxyamines prepared from 1 and 2 were measured at 333-373 K, and the Aacts and Eacts values were determined to be 2.8×1013 s−1 and 128 kJ mol−1 (1) and 4.0×1013 s−1 and 125 kJ mol−1 (2), respectively, from the Arrhenius plots. These results are compared with those for the structurally related piperidinyl-N-yloxyl radicals including TEMPO.  相似文献   

15.
Toru Katsumata 《Polymer》2008,49(12):2808-2816
The polymerization of diphenylacetylene derivatives possessing tert-amine moieties, such as triphenylamine, N-substituted carbazole and indole, was examined in the presence of TaCl5-n-Bu4Sn (1:2) catalyst. A polymer with high molecular weight (Mw = 570 × 103) was obtained in good yield by the polymerization of diphenylamine-containing monomer 1b, whereas the isopropylphenylamine derivative (1c) gave a polymer with relatively low molecular weight (Mw = 2.4 × 103). The polymerization of monomer 1d containing cyclohexylphenylamine group did not proceed; however, carbazolyl- and indolyl-containing monomers also produced polymers. Poly(1b), poly(2f) and poly(4b) could be fabricated into free-standing membranes by casting toluene solutions of these polymers. The gas permeability of poly(1b) was too low to be evaluated accurately whereas poly(4b) possessing two chlorine atoms in the repeating unit showed higher gas permeability than that of poly(1b); furthermore, poly(2f) having trimethylsilyl and 3-methylindolyl groups exhibited relatively high gas permeability (). In the cyclic voltammograms of diphenylamino group-containing polymers, poly(1b) and poly(2b), the intensities of oxidation and reduction peaks decreased more than those of carbazolyl-containing poly(2a). The molar absorptivity (?) of poly(1b) at ∼700 nm increased with increasing applied voltage in the UV-vis spectrum.  相似文献   

16.
Wei Zhang 《Polymer》2006,47(9):2956-2961
Polymerization of o-diethynylbenzene (1) by Rh and Ta catalysts resulted in the formation of structurally different polymers depending on the kind of catalyst. When a Rh catalyst was used, insoluble cross-linked poly(1) was formed, mainly consisting of alternating double bonds and the unreacted ethynyl group along with indene-type structure formed by intramolecular cyclization as a minor component. A Ta catalyst completely consumed both ethynyl groups in the polymerization of 1 to afford mainly highly cross-linked poly(1) containing trisubstituted benzene unit via intermolecular cyclization. 1-Ethynyl-2-phenylethynylbenzene (2) was polymerized by W and Mo catalysts to give soluble polymers with Mn of 6300-71,900 in good yields. Poly(2) obtained by Mo catalysts had alternating double bonds in the main chain and o-(phenylethynyl)phenyl group as side chains. Poly(2) formed by W catalysts predominantly contained a similar main-chain structure and also possessed the naphthalene-type cyclic unit formed by cyclization of the adjacent diethynyl groups as a minor part.  相似文献   

17.
Two new broad absorbing alternating copolymers, poly[1-(2,6-diisopropylphenyl)-2,5-bis(2-thienyl)pyrrole-alt-4,7-bis(3-octyl-2-thienyl)benzothiadiazole] (PTPTTBT-P1) and poly[1-(p-octylphenyl)-2,5-bis(2-thienyl)pyrrole-alt-4,7-bis(3-octyl-2-thienyl)benzothiadiazole] (PTPTTBT-P2), were prepared via Suzuki polycondensation with high yields. The two polymers were found to show characteristic absorption in the visible region of the solar spectrum. Interestingly the absorption of PTPTTBT-P1 was found to cover the visible region from 350 to 650 nm with the broad and flat absorption maximum from 440 to 510 nm in film and the absorption of PTPTTBT-P2 was found to cover the visible region from 350 to 950 nm with the relatively distinct absorption maxima at 425 and 522 nm and very weak absorption maximum at 832 nm in film. The electrochemical band gaps of the polymers were calculated to be 1.88 eV and 1.87 eV, respectively, while the optical band gaps of the polymers were calculated to be 1.94 eV and 1.87 eV, respectively. The photovoltaic properties of polymers were investigated with bulk heterojunction (BHJ) solar cells fabricated in ITO/PEDOT:PSS/polymer:PC70BM(1:5 wt%)/TiOx/Al configurations. The maximum power conversion efficiency (PCE) of the solar cell composed of PTPTTBT-P1:PC70BM as an active layer was 1.57% with current density (Jsc) of 8.17 mA/cm2, open circuit voltage (Voc) of 0.52 V and fill factor (FF) of 36%.  相似文献   

18.
A novel cationic fluorene-containing water-soluble poly(p-phenyleneethynylene) (PPE) derivative, poly[(9,9-bis{6′-[(N,N-diethyl)-N-methylammonium]hexyl}-2,7-fluorenyleneethynylene)-alt-co-(2,5-bis{3′-[(N,N-diethyl)-N-methylammonium]-1′-oxapropyl}-1,4-phenylene)] tetraiodide (P1′), was synthesized through Sonogashira reaction and a post-polymerization treatment. P1′ emits bright blue fluorescence in H2O with a high photoluminescence quantum yield (Φpl=26%). Studies on the optical properties and quenching experiments with in H2O and MeOH show that P1′ presents minor aggregation and high Stern-Volmer constant (Ksv=2.4×108 M−1) in aqueous solution. The remarkably reduced tendency towards aggregation, relative to previously reported water-soluble PPEs, made the optical properties of P1′ almost insensitive to the disturbance from the common ions (non-quencher) in the solution.  相似文献   

19.
In this study, theoretical analysis on the geometries and electronic properties of various conjugated poly(azomethine)s is reported. The theoretical ground-state geometry and electronic structure of the studied poly(azomethine)s are optimized by the hybrid density functional theory (DFT) method treated in periodic boundary conditions at the B3LYP level of theory with 6-31G basis set. The geometry and electronic structure of poly(1,4-phenylenemethylidyneitrilo-1,4-phenylene-nitrilomethylidyne) (PPI) are compared with those of poly(p-phenylene vinylene) (PPV) or polyazine (PAZ). The theoretical results suggest the non-coplanar conformation of PPI but PPV and PAZ with a coplanar conformation. The electronic properties of PPI are in the intermediate between PPV and PAZ. The non-coplanar conformation of PPI could be released if the phenylene ring is replaced by the five-member ring of 3,4-ethylenedioxythiophene (PEEI), pyrrole (PYYI), thiophene (PTTI), furan (PFFI), or thiadiazole (PThThI). The theoretical Eg of PEEI, PYYI, PFFI, and PTTI are in the range of 1.11-1.67 eV, which is due to the coplanar configuration or donor-acceptor intrachain charge transfer. However, the large bond length alternation or lack of charge transfer characteristic makes the PThThI with a larger Eg of 2.47 eV than others. The trend on the IP or EA of the studied conjugated poly(azomethine)s are consistent with the electronic characteristic of the aromatic ring. The upper valence bandwidth of the studied five-member ring based poly(azomethine)s except PThThI is in the range of 562-613 meV, which is larger than that of PPI (247 meV) or PPV (373 meV). The results suggest that the electronic properties of conjugated poly(azomethine)s could be varied through various ring structure. The proposed new coplanar conjugated poly(zomethine)s can be potentially used as transparent conductors or thin film transistors.  相似文献   

20.
Chih-Cheng Lee 《Polymer》2008,49(19):4211-4217
A series of vinyl copolymers (P1-P6) containing pendant hole-transporting triphenylamine (11-88 mol%) and carbazole chromophores were synthesized by radical copolymerization to investigate the influence of triphenylamine groups upon optoelectronic properties. The copolymers were readily soluble in common organic solvents and their weight-average molecular weights (Mws) were between 1.41 × 104 and 2.24 × 104. They exhibited moderate thermal stability with Td = 402-432 °C at 5% weight loss. The emission spectra (both PL and EL) of the blends [P1-P6 with 4 wt% Ir(ppy)3] showed dominant green emission (517 nm) attributed to Ir(ppy)3 due to efficient energy transfer from P1-P6 to Ir(ppy)3. The HOMO levels of P1-P6, estimated from onset oxidation potentials in cyclic voltammeter, were −5.42 to −5.18 eV, which are much higher than −5.8 eV of conventional poly(9-vinylcarbazole) (PVK) host owing to high hole-affinity of the triphenylamine groups. The optoelectronic performances of phosphorescent EL devices, using P1-P6 as hosts and Ir(ppy)3 as dopant (ITO/PEDOT:PSS/P1-P6:Ir(ppy)3 (4 wt%):PBD (40 wt%)/BCP/Ca/Al), were greatly improved relative to that of PVK. The best performance was obtained with P4 device, in which the maximum luminance and luminance efficiency were 11?501 cd/m2 and 10.6 cd/A, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号