首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
Composite epoxy samples filled with PbO and Pb3O4 were fabricated to investigate the mass attenuation characteristics of the composites to X‐rays in the diagnostic imaging energy range. The effect of density on the attenuation ability of the composites for radiation shielding purposes was studied using a calibrated X‐ray machine. Characterization of the microstructure properties of the synthesized composites was performed using synchrotron radiation diffraction, optical microscopy, and scanning electron microscopy. The results indicate that the attenuation ability of the composites increased with an increase in density. The particle size of WO3 fillers has a negligible effect on the value of mass attenuation coefficient. Microstructural analyses have confirmed the existence of fairly uniform dispersion of fillers within the matrix of epoxy matrix with the average particle size of 1–5 μm for composites with filler loading of ≤ 30 wt % and 5–15 μm for composites with filler loading of ≥ 50 wt %. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
To develop a new class of composites with adequately high thermal conductivity and suitably controlled dielectric constant for electronic packages and printed circuit board applications, polymer composites are prepared with microsized Al2O3 particle as filler having an average particle size of 80–100 μm. Epoxy and polypropylene (PP) are chosen as matrix materials for this study. Fabrication of epoxy‐based composite is done by hand lay‐up technique and its counterpart PP‐based composite are fabricated by compression molding technique with filler content ranging from 2.5–25 vol%. Effects of filler loading on various thermal properties like effective thermal conductivity (keff), glass transition temperature (Tg), coefficient of thermal expansion (CTE) and electrical property like dielectric constant (εc) of composites are investigated experimentally. In addition, physical properties like density and void fraction of the composites along with there morphological features are also studied. The experimental findings obtained under controlled laboratory conditions are interpreted using appropriate theoretical models. Results show that with addition of 25 vol% of Al2O3, keff of epoxy and PP improve by 482% and 498% respectively, Tg of epoxy increases from 98°C to 116°C and that of PP increases from −14.9°C to 3.4°C. For maximum filler loading of 25 vol% the CTE decreases by 14.8% and 26.4% for epoxy and PP respectively whereas the dielectric constants of the composites get suitably controlled simultaneously. POLYM. COMPOS., 36:102–112, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
Epoxy composites filled with phase‐separation formed submicron liquid rubber (LR) and preformed nanoscale powdered rubber (PR) particles were prepared at different filler loading levels. The effect of filler loading and type on the rheological properties of liquid epoxy resin suspensions and the thermal and mechanical properties of the cured composites as well as the relative fracture behaviors are systematically investigated. Almost unchanged tensile yield strength of the cured epoxy/PR composites is observed in the tensile test compared with that of the neat epoxy; while the strength of the cured epoxy/LR composites shows a maximum value at ∼4.5 wt% and significantly decreases with increasing LR content. The glass transition temperature (Tg) of the cured PR/epoxy has shifted to the higher temperature in the dynamic mechanical thermal analysis compared with that of the cured pure epoxy and epoxy/LR composites. Furthermore, the presence of LR results in highly improved critical stress intensity factor (KIC) of epoxy resin compared with the corresponding PR nanoparticles. In particular, the PR and LR particles at 9.2 wt% loading produce about 69 and 118% improvement in KIC of the epoxy composites, respectively. The fracture surface and damage zone analysis demonstrate that these two types of rubber particles induce different degrees of local plastic deformation of matrix initiated by their debonding/cavitation, which was also quantified and correlated with the fracture toughness of the two epoxy/rubber systems. POLYM. COMPOS., 36:785–799, 2015. © 2014 Society of Plastics Engineers  相似文献   

4.
A systematic study was carried out on the magnetic, dielectric and microwave absorption properties of the two-phase FeAlSi/epoxy and three-phase FeAlSi/BaTiO3/epoxy composites through experimental and simulation method. A percolation effect was observed in the dielectric, but not in the magnetic behavior of the FeAlSi/epoxy composites when the FeAlSi content was high. The 2D modeling shows that the high electric energy density is responsible for the high permittivity near the percolation threshold (49 vol%). On the other hand, the permeability of the composites matches well with the effective medium theory model (EMT), indicating that the permeability of FeAlSi/epoxy composite is more associated with the filler size and shape. Theoretical calculations show that the increment of the FeAlSi and BaTiO3 loading, as well as the thickness will cause the absorption peak position to shift to low frequencies. The microwave absorption of these composites can be mainly attributed to the dielectric loss and magnetic loss.  相似文献   

5.
The present study was carried out to determine the filler characteristics and to investigate the effects of three types of mineral fillers (CaCO3, silica, and mica) and filler loadings (10–40 wt%) on the properties of polypropylene (PP) composites. The characteristics of the particulate fillers, such as mean particle size, particle size distribution, aspect ratio, shape, and degree of crystallinity were identified. In terms of mechanical properties, for all of the filled PP composites, Young's modulus increased, whereas tensile strength and strain at break decreased as the filler loading increased. However, 10 wt% of mica in a PP composite showed a tensile strength comparable with that of unfilled PP. Greater tensile strength of mica/PP composites compared to that of the other composites was observed because of lower percentages of voids and a higher aspect ratio of the filler. Mica/PP also exhibited a lower coefficient of thermal expansion (CTE) compared to that of the other composites. This difference was due to a lower degree of crystallinity of the filler and the CTE value of the mica filler. Scanning electron microscopy was used to examine the structure of fracture surfaces, and there was a gradual change in tensile fracture behavior from ductile to brittle as the filler loading increased. The nucleating ability of the fillers was studied with differential scanning calorimetry, and a drop in crystallinity of the composites was observed with the addition of mineral filler. Studies on the hybridization effect of different (silica and mica) filler ratios on the properties of PP hybrid composites showed that the addition of mica to silica‐PP composites enhanced their tensile strength and modulus. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

6.
Epoxy polymers are commonly utilized in structural applications due to their high bearing capacity and excellent chemical resistance. However, their inherent brittleness poses a significant challenge for their use in high shock and fracture strength products. To address this shortcoming, fillers can be incorporated into the polymer during preparation. In this study, we aimed to investigate the effect of incorporating cellulose-based fillers, namely cellulose nanocrystals (CNCs) and microcrystalline cellulose (MCC), on the mechanical properties of epoxy polymer composites. The study evaluated the impact of various factors, including filler concentration, particle size, and moisture content, on the mechanical properties of the composites. The results demonstrated that the incorporation of CNC or MCC powders at concentrations below 5% could enhance the mechanical properties of the resulting epoxy composites without adversely affecting their surface and thermal properties. The maximum tensile strength and fracture toughness of the filler-based epoxy composites were achieved at 2 and 4 wt% for CNCs and MCC, respectively. CNCs with a smaller particle size distribution were found to be much more effective than MCC in improving the mechanical properties of the epoxy composites. Furthermore, utilizing dried fillers resulted in a higher improvement in tensile strength, which was achieved at lower filler concentrations.  相似文献   

7.
Dilatation of specimens is measured during tensile tests to investigate the mechanical response of particulate-filled amorphous networks in the glassy state. The effects of particle size, volume fraction of filler, coupling agents, and crosslink density of the matrix on the mechanical-dilatational behavior are studied on model composites of glass-bead-filled polyurethanes. It is found that the stress-strain response of composites with untreated glass beads shows nonlinearity and subsequent yielding due to dewetting of particles from the matrix. In contrast, composites containing particles coated with a comupling agent fracture in a brittle manner, showing no significant nonlinearity and dewetting. Coated particles provide a higher tensile strength, but a lower strain at fracture, than uncoated particles. The volume fraction of the filler has an effect on Young's modulus, which is independent of the degree of coupling between the matrix and the filler. Tensile strength and strain at break decrease with increasing filler content for coated and uncoated particles. No strong effect of particle size is observed on either the tensile modulus or the dilatational behavior in the 25 μm to 160 μm diameter range. However, strain at break increases with decreasing particle size. When the accompanying yield phenomena shift to smaller strains, and a transition to brittle fracture takes place at high crosslink densities.  相似文献   

8.
Polymer‐matrix composites based on brominated epoxy as the matrix and aluminum nitride (AlN) particle as the filler were prepared. Effects of AlN size and content as well as composite processing conditions on the preparation and properties of the composites had been investigated. At the same processing conditions, Young's modulus (E) and dielectric constant (Dk) of the composites increase, whereas coefficient of thermal expansion decreases when increasing AlN content or decreasing AlN size; tensile strength and elongation at break first increase then decrease with AlN content, and they reach maximum values at lower AlN content with decreasing AlN size; glass transition temperature (Tg) also exhibits a trend of first increase then decrease with AlN content, and it decreases with decreasing AlN size, especially at high AlN content; dissipation factor (Df) generally decreases with AlN content except for the composites filled with 50 nm‐AlN, and it increases with decreasing AlN size. Comparing the composites prepared at different processing conditions, the properties of the composite are relatively poor at low vacuum conditions during removal of solvent and bubble. The scanning electron microscope and Fourier transform infrared analyses indicate that the properties of the composites are related to the aggregation of AlN filler and voids in the composites as well as the crosslink density of epoxy matrix. The preparation of the composites is also found to be affected by AlN size and content as well as vacuum conditions, indicating that increase of viscosity of system and/or the solvent evaporation during curing results in poor formability of the composites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
《国际聚合物材料杂志》2012,61(3-4):241-254
Abstract

The paper reports on the curing characteristics and mechanical properties of oil palm wood flour (OPWF) reinforced epoxidized natural rubber (ENR) composites. Three sizes of OPWF at different filler loadings were compounded with a two roll mill. The cure (t 90) and scorch times of all filler size decrease with increasing OPWF loading. Increasing OPWF loading in ENR compound resulted in reduction of tensile strength and elongation at break but increased tensile modulus, tear strength and hardness. The composites filled with smaller OPWF size showed higher tensile strength, tensile modulus and tear strength. Scanning electron microscope (SEM) micrographs showed that at lower filler loading the fracture of composites occurred mainly due to the breakage of fibre with minimum pull-out of fibres from the matrix. However as the filler loading is increased, the fibre pull-out became very prominent due to the lack of adhesion between fibre and rubber matrix.  相似文献   

10.
The effect of waste office white paper (WOWP) loading and size on mechanical properties, morphology and thermal properties of LDPE/WOWP composites were investigated. The results showed that increasing of WOWP loading has increased tensile strength and Young's modulus but decreased elongation at break of composites. LDPE/WOWP composites with smaller particle size (31 μm) have higher mechanical properties. Thermal analysis results of composites with particle size (31 μm) show higher thermal stability and crystallinity than composites with particle size (77 μm). Scanning electron microscope (SEM) micrograph indicates that the smaller particle size of filler has better interaction with LDPE matrix.  相似文献   

11.
《Ceramics International》2016,42(6):7141-7147
Barium titanate (BaTiO3)/epoxy resin composites with a novel structure, in which the BaTiO3 particles were directionally aligned in the epoxy resin matrix, were fabricated using the ice-templating method. The effects of the filler particle alignment and the filler fraction on the dielectric permittivity as well as the dielectric loss of the composites were studied. The results show that the aligning filler particles can significantly improve the dielectric permittivity while maintaining the dielectric loss compared with the traditional composite structure (homogeneously distributed). Due to the feasibility of the enhancement of the dielectric properties of the composites, the particle alignment that is achieved via the ice-templating method can be used in the field of high energy density capacitors.  相似文献   

12.
Herein, the influence of corundum filler types and contents on the morphological, thermal, and mechanical properties of epoxy nanocomposites tailored for applications as chemical anchoring and bonding systems is investigated. Up to 65 wt% corundum particles with aspect ratios (AR) varying between 1 and 70, average particle sizes ranging from 500 nm to 48 µm, and nanoplatelet thickness varying from 40 to 300 nm, are uniformly dispersed in amine‐cured epoxy resins. At both 25 and 50 wt% filler content, the properties of corundum/epoxy composites are far superior to those of the corresponding benchmark epoxy composites containing a conventional filler such as cement, talcum, or sand. The incorporation of corundum nanoplatelets with AR of 50, length of 2 µm, and thickness of 40 nm, significantly improves Young's modulus (3.5–9.8 GPa) and fracture toughness KIc (0.83–1.24 MPa of epoxy nanocomposites at the expense of tensile strength (72–49 MPa). The pull‐out values of the corresponding chemical anchoring systems substantially improve with decreasing sub‐micrometer corundum particle sizes and correlate with tensile strength of the corundum/epoxy nanocomposites, but are much less dependent on corundum particle morphologies, filler aspect ratio, and Young's modulus of the corundum/epoxy composite.  相似文献   

13.
The addition of silica nanoparticles (23 nm, 74 nm, and 170 nm) to a lightly crosslinked, model epoxy resin, was studied. The effect of silica nanoparticle content and particle size on glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus (E), yield stress (σ), fracture energy (GIC) and fracture toughness (KIC), were investigated. The toughening mechanisms were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and transmission optical microscopy (TOM). The experimental results revealed that the addition of silica nanoparticles did not have a significant effect on Tg or the yield stress of epoxy resin, i.e. the yield stress and Tg remained constant regardless of silica nanoparticle size. As expected, the addition of silica nanoparticles had a significant impact on CTE, modulus and fracture toughness. The CTE values of nanosilica-filled epoxies were found to decrease with increasing silica nanoparticle content, which can be attributed to the much lower CTE of the silica nanoparticles. Interestingly, the decreases in CTE showed strong particle size dependence. The Young's modulus was also found to significantly improve with addition of silica nanoparticles and increase with increasing filler content. However, the particle size did not exhibit any effect on the Young's modulus. Finally, the fracture toughness and fracture energy showed significant improvements with the addition of silica nanoparticles, and increased with increasing filler content. The effect of particle size on fracture toughness was negligible. Observation of the fracture surfaces using SEM and TOM showed evidence of debonding of silica nanoparticles, matrix void growth, and matrix shear banding, which are credited for the increases in toughness for nanosilica-filled epoxy systems. Shear banding mechanism was the dominant mechanism while the particle debonding and plastic void growth were the minor mechanisms.  相似文献   

14.
This work focuses on the use of peanut shell powder (PSP) as filler in natural rubber (NR). Peanut, one of the food crops in the world, generates large amounts of waste namely peanut shell. Modified and unmodified PSP-NR composites with varying particle size and dosages were prepared by an open mill mixing technique. The processing characteristics and the curing behavior of the composites were determined by Monsanto Rheometer. The technological performance was done by analyzing the tensile strength, tear strength, and hardness of the vulcanizates. The swelling studies were carried out to observe the crosslink density, rubber-filler interaction, and the reinforcing nature of the filler on NR. The observed variation in mechanical properties has been supported by the fractography of the composites obtained by Scanning Electron Microscopy. The result of the study shows that the PSP is most effective filler in NR at 10 parts per hundred (phr) loading. Filler reinforcement ability of modified PSP is more when compared with unmodified PSP; therefore, modified PSP-NR composites shows better physicomechanical properties. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Natural rubber–epoxidized natural rubber–silica composites were prepared by the wet masterbatch technique and the traditional dry mixing method. Performances of the composites based on different preparation methods were investigated with a moving die rheometer, an electronic universal testing machine, a dynamic mechanical analyzer, a nuclear magnetic resonance crosslink density analyzer, a rubber processing analyzer (RPA), a scanning electron microscope (SEM), and a transmission electron microscope (TEM). The RPA, SEM, and TEM analyses indicated that silica has better dispersion, lower filler–filler interaction, and better filler–rubber interaction in compounds based on the wet masterbatch technique, leading to improvements in mechanical strength and the dynamic mechanical and compression properties of the composites. It also indicates that composites prepared by the wet masterbatch technique have shorter scorch time, faster curing velocity, and higher crosslink density. The composites prepared by the wet materbatch technique also have lower rolling resistance, which is an important property for their use as a green material for the tire industry. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43571.  相似文献   

16.
An effect of nanosize CaCO3 on physical, mechanical, thermal and flame retarding properties of PBR was compared with commercial CaCO3 and fly ash filled PBR. CaCO3 at the rate of 9, 15, and 21 nm were added in polybutadiene rubber (PBR) at 4, 8 and 12 wt.% separately. Properties such as swelling index, specific gravity, tensile strength, Young's modulus, elongation at break, modulus at 300% elongation, glass transition temperature, decomposition temperature, flame retardency, hardness, and abrasion resistances were determined. The swelling index decreased and specific gravity increased with reduction in particle size of fillers in PBR composites. There was significant improvement in physical, mechanical, thermal and flame-retarding properties of PBR composites due to a reduction in the particle size of fillers. Maximum improvement in mechanical and flame retarding properties was observed at 8 wt.% of filler loading. This increment in properties was more pronounced in 9 nm size CaCO3. The results were not appreciable above 8 wt.% loading of nano fillers because of agglomeration of nanoparticles. In addition, an attempt was made to consider some thermodynamically aspects of resulting system. The cross-linkage density has been assessed by Flory-Rehner equation in which free energy was increased with increase in filler content.  相似文献   

17.
In the quest for superior materials, especially in industrial applications demanding strength, stiffness, low density, and cost-efficiency, composite materials have emerged as game changers. Combining a polymer matrix with reinforcement materials, they hold great promise. However, the challenge of particle agglomeration looms large, especially at high loadings. Particle agglomeration disrupts filler distribution and gives rise to voids in polymer composites. This study investigates the fusion behavior of agglomerated Nylon particles and their influence on Nylon/epoxy composites. Using epoxy resin and Nylon SP301, a micron-sized Nylon 12 powder with a 185°C melting point, composites were prepared at 3%, 9%, and 15% Nylon loading. After curing, these composites underwent controlled heating at 185, 195, and 205°C, with a fusion of 20–100 min. At 185°C, particles initially remain separate, forming slight clumps after 20 min and increasingly sticking together at 60 and 100 min. Shifting to 195°C, particles begin consolidating into a solid mass even after 20 min. The introduction of Nylon decreases composite density compared to pure epoxy, and density changes vary with fusion time, exhibiting complete fusion, partial fusion, and shrinkage-induced gap formation. Differential scanning calorimetry analysis reveals evolving glass transition temperatures (Tg) influenced by the fusion process, with longer fusion times yielding higher Tg and greater heat capacity.  相似文献   

18.
Numerous ways to reinforce epoxy resin and improve its thermomechanical properties have been attempted using organic and inorganic nanoparticles. In this paper, graphitic carbon nitride (g-C3N4) nanoparticles were synthesized and used to improve the mechanical properties and thermal stability of epoxy composites. The g-C3N4 was synthesized from cheap melamine powder using a simple one-step thermal treatment, then was used to reinforce the resin at different weight percentages (wt%). X-ray diffraction, scanning electron microscopy (SEM), and Fourier infrared spectroscopy were used to characterize the g-C3N4 and ensure its successful synthesis by studying the changes in its crystal structure, morphology, and chemical structure. The filler was dispersed in the resin using a combination of ultrasonication and high shear mixing. The results showed that the mechanical properties were optimum when 0.5 wt% g-C3N4 was used. The tensile strength and fracture toughness of the resulting epoxy composite improved by 21.8% and 77.3%, respectively. SEM was used to investigate the morphologies of cracks formed in epoxy composite specimens after the tensile testing. The SEM micrographs of the fracture surface showed a transition from a brittle to a rough morphology, signifying the enhancement in the composites' toughness. Thermogravimetric analysis showed a good improvement in degradation temperature of up to 8.86% while dynamic mechanical analysis showed that the incorporation of g-C3N4 did not affect the material's glass transition temperature.  相似文献   

19.
Switchgrass (SWG) has been used as a filler to produce conjugated linseed oil‐based green composites. The effect of the amount of the SWG; the matrix crosslink density; and the incorporation of a compatibilizer, maleic anhydride (MA), on the structure, water absorption, and thermal and mechanical properties of the composites has been investigated. The thermal stability of the composites is primarily dependent on the amount of the SWG fibers, which are far less thermally stable than the linseed oil‐based resin. For the most part, improvements in the mechanical properties can be achieved by increasing the amount of SWG (up to 70 wt %), increasing the amount of the crosslinker, and adding MA to increase the filler–matrix interaction. The uptake of water in the composites is mostly influenced by the loading of the SWG fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Fracture properties of a wide range of filled unsaturated polyester resin composites have been investigated with respect to filler size, shape, loading and adhesion to the matrix resin. Mechanisms are proposed for the fracture behaviors found, based on geometrical considerations of interacting filler particles and stress concentrations which result from them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号