首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermal polymerization of methyl (meth)acrylate (MMA) was carried out using 2-cyanoprop-2-yl-1-dithionaphthalate (CPDN) and cumyl dithionaphthalenoate (CDN) as chain transfer agents. The kinetic study showed the existence of induction period and rate retardation, especially in the CDN mediated systems. The molecular weights of the polymers increased linearly with the monomer conversion, and the molecular weight distributions (Mw/Mns) of the polymers were relatively narrow up to high conversions. The maximum number-average molecular weights (Mns) reached to 351?900 g/mol (Mw/Mn = 1.47) and 442?400 g/mol (Mw/Mn = 1.29) in the systems mediated by CPDN and CDN, respectively. Chain-extension reactions were also successfully carried out to obtain higher molecular weight PMMA and PMMA-block-polystyrene (PMMA-b-PSt) copolymer with controlled structure and narrow Mw/Mn. Thermal polymerization of methyl acrylate (MA) in the presence of CPDN, or benzyl (2-phenyl)-1-imidazolecarbodithioate (BPIC) also demonstrated “living”/controlled features with the experimented maximum molecular weight 312?500 g/mol (Mw/Mn = 1.57). The possible initiation mechanism of the thermal polymerization was discussed.  相似文献   

2.
Two pyridylphosphine ligands, 2-(diphenylphosphino)pyridine (DPPP) and 2-[(diphenylphosphino)methyl]pyridine (DPPMP), were investigated as complexing ligands in the iron-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) and styrene with various initiators and solvents. In studies of their ATRP behavior, the FeBr2/DPPP catalytic system was a more efficient ATRP catalyst for the MMA polymerization than the other complexes studied in this paper. Most of these systems were well controlled with a linear increase in the number-average molecular weights (Mn) vs. conversion and relatively low molecular weight distributions (Mw/Mn = 1.15-1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values with the DPPP ligand. The polymerization rate of MMA attained a maximum at a ratio of ligand to metal of 2:1 in p-xylene at 80 °C. The polymerization was faster in polar solvents than in p-xylene. The 2-bromopropionitrile (BPN) initiated ATRP of MMA with the FeX2/DPPP catalytic system (X = Cl, Br) was able to be controlled in p-xylene at 80 °C. The polymerization of styrene was able to be controlled using the PECl/FeCl2/DPPP system in DMF at 110 °C.  相似文献   

3.
4-(Trifluorovinyloxy)benzaldehyde was treated under Wittig conditions with 4-dihexyloxy-2,5-xylenebis(triphenylphosphoniumbromide) to form 1,4-bis(2′-(4-trifluorovinyloxyphenyl)ethenyl)-2,5-dihexyloxybenzene, a novel phenylene vinylene-bistrifluorovinyl ether monomer. Cyclopolymerization afforded an insoluble, non-luminescent material likely due to cross-addition reactions between phenylene vinylene olefin and trifluorovinyl ether (TFVE). However, 1,2-bis(4-formylphenoxy)hexafluorocyclobutane was polymerized with 1,4-dihexyloxy-2,5-xylenebis(triphenylphosphoniumbromide) and 1-methoxy-4-(2-ethylhexyloxy)-2,5-xylenebis(triphenylphosphoniumbromide) under Wittig conditions to yield two novel poly(perfluorocyclobutyl-co-phenylene vinylene) polymers. The polymers are of moderate molecular weight (8600-8700 Mn), show excellent thermal stability (Td = 390-405 °C), and are readily soluble in common organic solvents. The materials are highly fluorescent in both solution and thin film with solution quantum yields of 68 and 71%.  相似文献   

4.
Vinyl ester (VE) monomers with bimodal molecular weight distributions were prepared by reacting methacrylic acid with blends of monodisperse epoxy resins ranging in molecular weight from 350-7000 g/mol. Monodisperse vinyl ester monomers were prepared from epoxy resins of a single molecular weight. The extent of vinyl ester formation was found to be near complete and side reactions, such as etherification, did not occur to a significant extent. The viscosities of these vinyl ester resins were measured as a function of styrene content. It was found that resin viscosity, η, increased exponentially and predictably as both the styrene content (S) decreased and as the number average molecular weight (Mn) of the vinyl ester monomers increased: η∼exp(Mn)/exp(S). Cure kinetics studies showed that the vinyl ester reactivity ratio decreased to 0.1 from 0.6 for bimodal blends relative to monodisperse resins while the styrene reactivity ratio increased from 0.4 to 0.6. Thus, the microgels in bimodal blends were smaller than in monodisperse resins. Emissions studies proved that decreasing the styrene content reduced the VOC emission rate and total emissions. Higher VE molecular weights decreased the overall emissions due to a reduction in monomer mobility. Tg decreased from 143 to 125 °C as Mn of the VE monomers increased from 540 to 920 g/mol; yet, Tg of these bimodal blends were still equal to or greater than that of commercial VE resins (∼125 °C). The fracture toughness of bimodal blends increased from ∼100 to ∼330 J/m2 as VE Mn increased from 540 to 920 g/mol because of matrix toughening. The fracture properties did not improve as the styrene content increased from 35 to 45 wt% because of corresponding changes in the morphology. Yet, there were numerous low VOC bimodal formulations with fracture properties in excess of the low VOC Dow Derakane 441-400 (110 J/m2) and even the industry standard Derakane 411-350 (240 J/m2).  相似文献   

5.
Broadband dielectric relaxation spectroscopy (DRS), thermally stimulated depolarisation currents (TSDC), differential scanning calorimetry (DSC) and to a lesser extent water uptake measurements, were employed to investigate molecular mobility, morphology and crystallization/melting events of PEG in poly(imide-amide)-polyethylene glycol hybrid networks (PIA-PEG) with short (Mn=1000 g/mol) and long (Mn=3400 g/mol) PEG crosslinks. The results obtained suggest long range connectivity of the PEG component in the hybrids with short PEG crosslinks at PEG content higher than 40 wt% and in these with long PEG crosslinks at PEG content higher than 20 wt%. Crystallization of the PEG component is observed by DSC in the hybrids with the longer crosslinks at sufficiently high content of PEG, only. The glass transition temperature, Tg, of PEG component in the hybrids with the shorter PEG crosslinks is shifted to higher temperatures compared to that of the hybrids with longer PEG crosslinks, while suppression of the glass transition of the PEG component is observed in the hybrids with the shorter PEG crosslinks at PEG content lower than 40 wt%. The results are discussed in terms of constraints to segmental motion of the PEG crosslinks, imposed by fixed PEG chain ends on the rigid PI chains.  相似文献   

6.
Wei Zhang 《Polymer》2007,48(9):2548-2553
A novel polymer brush consisting of poly(phenylacetylene) (PPA) main chain and poly(dimethylsiloxane) (PDMS) side chains was synthesized by the polymerization of phenylacetylene-terminated PDMS macromonomer (M-PDMS). The macromonomer was prepared by the esterfication of monohydroxy-ended PDMS (PDMS-OH, degree of polymerization (DP) = 42) with p-ethynylbenzoic acid. The polymerization of M-PDMS using [(nbd)RhCl]2/Et3N catalyst led to polymer brush, poly(M-PDMS), with Mn up to 349?000 (DP of main chain 104). Poly(M-PDMS) with narrow molecular weight distribution (Mn = 39?900, Mw/Mn = 1.11) was obtained with a vinyl-Rh catalyst, [Rh{C(Ph)CPh2}(nbd){P(4-FC6H4)3}]/(4-FC6H4)3P. Poly(M-PDMS)s were brown to orange viscous liquids and soluble in organic solvents such as toluene and CHCl3. The UV-vis absorptions of poly(M-PDMS) were observed in the range of 350-525 nm, which are attributable to the PPA main chain.  相似文献   

7.
Peihua Ren 《Polymer》2009,50(20):4801-5711
We report the synthesis and optoelectronic properties of highly soluble poly(9,10-bis(3′,4′-di(2″-ethylhexyloxy))phenyl)-2,6-anthracenevinylene) (HSM-PAV). The key intermediate for the synthesis of HSM-PAV is 2,6-dimethyl-9,10-dibromoanthracene, and the high solubility of HSM-PAV is from the incorporation of lateral 3,4-di(2-ethylhexyloxy)phenyl moieties into the 9,10-positions of anthracene units. The increase of side alkyloxy groups endows HSM-PAV with higher molecular weight (Mn = 3.2 × 104) and better electroluminescence performances (Lmax = 590 cd/m2, LEmax = 0.27 cd/A) compared with the poly(2,6-anthracenevinylene) with lateral monoalkyoxy moieties (Mn = 1.9 × 104, Lmax = 340 cd/m2, LEmax = 0.17 cd/A). The electrical conductivity of doped HSM-PAV film with iodine is 5 × 10−2 S cm−1 that is several order higher than that of doped 9,10-anthracene-based polymers, further demonstrating that linkage position has a dramatic effect on the optoelectronic properties of anthracene-based conjugated polymers.  相似文献   

8.
Poly(propylene carbonate) (PPC) with number average molecular weight (Mn) higher than 200 kg/mol was prepared via the terpolymerization of carbon dioxide, propylene oxide and diepoxide using Y(CCl3OO)3-ZnEt2-glycerine coordination catalyst. When equimolar ZnEt2 and diepoxide were used, double propagation active species were generated in situ by nucleophilic attack of metal alkoxide on diepoxide, leading to PPC of doubled Mn value. The molecular weight of PPC has dramatic influence on its thermal and mechanical performances. PPC with Mn of 227 kg/mol showed modulus of 6900 MPa, while the modulus of PPC with Mn of 109 kg/mol was only 4300 MPa. Moreover, when Mn increased from 109 to 227 kg/mol, a 37 °C increase of the onset degradation temperature was observed.  相似文献   

9.
LaFeO3 were synthesized via a sol-gel route based on polyvinyl alcohol (PVA). Differential scanning calorimetry (DSC), Thermogravimetric (TG), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FESEM) techniques were used to characterize precursors and derived oxide powders. The effect of the ratios of positively charged valences to hydroxyl groups of PVA (Mn+/-OH) on the formation of LaFeO3 was investigated. XRD analysis showed that single-phase and well-crystallized LaFeO3 was obtained from the Mn+/-OH = 4:1 molar ratio precursor at 700 °C. For the precursor with Mn+/-OH = 2:1, nanocrystalline LaFeO3 with average particle size of ∼50 nm was formed directly in the charring procedure. With increase of PVA content to Mn+/-OH = 1:1, phase pure LaFeO3 was obtained at 500 °C.  相似文献   

10.
A dilute aqueous solution of the temperature-sensitive polymer, poly(vinyl methyl ether) (PVME), was irradiated by a pulsed electron beam in a closed-loop system. At temperatures, below the lower critical solution temperature (LCST), intramolecular crosslinked macromolecules, nanogels, were formed. With increasing radiation dose D the molecular weights Mw increase, whereas the dimensions (radius of gyration Rg, hydrodynamic radius Rh) of the formed nanogels decrease. The structure of the PVME nanogels was analyzed by field emission scanning electron microscopy (FESEM) and globular structures with d=(10-30) nm were observed. The phase-transition temperature of the nanogels, as determined by cloud point measurements, decreases from Tcr=36 °C (non-irradiated polymer) to Tcr=29 °C (cp=12.5 mM, D=15 kGy), because of the formation of additional crosslinks and an increase in molecular weights. The same behavior was observed for a pre-irradiated PVME (γ-irradiation) with higher molecular weight due to intermolecular crosslinks. After pulsed electron beam irradiation the molecular weight again slightly increases whereas the dimension decreases. Above D=1 kGy the calculated ρ-parameter (ρ=Rg/Rh) is in the range of ρ=0.5-0.6 that corresponds to freely draining globular structures.  相似文献   

11.
Phenanthrene α-end-labeled poly(N-decylacrylamide-b-N,N-diethylacrylamide) (PDcAn-b-PDEAm) block copolymers consisting in a highly hydrophobic block (n = 11) and a thermoresponsive block with variable length (79 ≤ m ≤ 468) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. A new phenanthrene-labeled chain transfer agent (CTA) was synthesized and used to control the RAFT polymerization of a hydrophobic acrylamide derivative, N-decylacrylamide (DcA). This first block was further used as macroCTA to polymerize N,N-diethylacrylamide (DEA) in order to prepare diblock copolymers with the same hydrophobic block of PDcA (number average molecular weight: Mn = 2720 g mol−1, polydispersity index: Mw/Mn = 1.13) and various PDEA blocks of several lengths (Mn = 10,000-60,000 g mol−1) with a very high blocking efficiency. The resulting copolymers self-assemble in water forming thermoresponsive micelles. The critical micelle concentration (CMC) was determined using Förster resonance energy transfer (FRET) between phenanthrene linked at the end of the PDcA block and anthracene added to the solution at a low concentration (10−5 M), based on the fact that energy transfer only occurs when phenanthrene and anthracene are located in the core of the micelle. The CMC (∼2 μM) was obtained at the polymer concentration where the anthracene fluorescence intensity starts to increase. The size of the polymer micelles decreases with temperature increase around the lower critical solution temperature of PDEA in water (LCST ∼ 32 °C) owing to the thermoresponsiveness of the PDEA shell.  相似文献   

12.
Lihui Cao  Weimin Dong  Xuequan Zhang 《Polymer》2007,48(9):2475-2480
The oxovanadium phosphonates (VO(P204)2 and VO(P507)2) activated by various alkylaluminums (AlR3, R = Et, i-Bu, n-Oct; HAlR2, R = Et, i-Bu) were examined in butadiene (Bd) polymerization. Both VO(P204)2 and VO(P507)2 showed higher activity than those of classical vanadium-based catalysts (e.g. VOCl3, V(acac)3). Among the examined catalysts, the VO(P204)2/Al(Oct)3 system (I) revealed the highest catalytic activity, giving the poly(Bd) bearing Mn of 3.76 × 104 g/mol, and Mw/Mn ratio of 2.9, when the [Al]/[V] molar ratio was 4.0 at 40 °C. The polymerization rate for I is of the first order with respect to the concentration of monomer. High thermal stability of I was found, since a fairly good catalytic activity was achieved even at 70 °C (polymer yield > 33%); the Mn value and Mw/Mn ratio were independent of polymerization temperature in the range of 40-70 °C. By IR and DSC, the poly(Bd)s obtained had high 1,2-unit content (>65%) with atactic configuration. The 1,2-unit content of the polymers obtained by I was nearly unchanged, regardless of variation of reaction conditions, i.e. [Al]/[V], ageing time, and reaction temperature, indicating the high stability of stereospecificity of the active sites.  相似文献   

13.
Stoichiometric ratios of poly(ethylene glycol) (PEG, Mw = 400) with poly(vinylpyrrolidone) (PVP, Mw = ±3.1 × 104 and Mw = 1.25 × 106 Mw) were prepared from ethanol cast solutions and in supercritical CO2. The complex formation was studied via glass transition (Tg) analysis obtained from differential scanning calorimetry (DSC) thermograms. PEG-PVP blends were also loaded with ibuprofen. The molecular dispersion of ibuprofen, mechanism of interaction, the effect of CO2 pressure and temperature and ageing of blends were also analysed with DSC, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray diffraction (XRD). Tg analysis indicated that supercritical CO2 can facilitate the formation of stoichiometric PEG-PVP complexes. Processing of PEG-PVP blends with ibuprofen results in the molecular dispersion of ibuprofen mainly bonded to PVP carbonyl groups, without significant disruption of the PEG-PVP complex. Increasing process pressure results in extraction of some PEG fractions. Post-processing ATR-FTIR shifts in ibuprofen-PEG-PVP complexes is greater with supercritical CO2 processing. These shifts are mainly attributed to atmospheric moisture absorption. Overall it was shown that, ibuprofen-loaded PEG-PVP complexes can be prepared from supercritical CO2 processing showing similar characteristics to such complexes prepared from solution casting.  相似文献   

14.
Five members of tricalcium silicate solid solution, Ca3 − x − yMgxAly(Si1 − yAly)O5, have been prepared. T1, T3 and M3 forms have been identified by X-ray powder diffraction, but pure M1 form was not stabilized. The crystal structure of a sample nominally Ca2.96Mg0.03Al0.01(Si0.99Al0.01)O5 has been studied by a joint Rietveld refinement using strictly monochromatic laboratory X-ray and neutron powder diffraction data, with soft constraints of interatomic distances. The crystal structure of this alite is a T3 form with a triclinic cell, space group P 1?1­, of dimensions a = 11.6389(2) Å, b = 14.1716(3) Å, c = 13.6434(3) Å, α = 104.982(2)°, β = 94.622(1)°, γ = 90.107(2)° and V/Z = 120.346(6) Å3. Laboratory and commercial clinkers were studied by synchrotron X-ray powder diffraction and the Rietveld method. The reported T3 structure for alite fits properly a variety of laboratory Portland clinkers with low magnesium contents. The alite refined volume(s) (V/Z) is useful to predict the magnesium oxide content of a clinker and the alite-type. Thus, a refined V/Z value between 121.0 and 120.3 Å3 should contain up to ~ 1.0 wt.% of MgO, being T3 type. If refined C3S V/Z is smaller than ~ 119.8 Å3 the clinker may contain more than ~ 2.1 wt.% of MgO with alite as M3. For intermediate magnesium (and sulfur) contents, alites phase coexistence may be detected by using strictly monochromatic laboratory or synchrotron X-ray powder diffraction. However, the application of these results to commercial materials has to be taken cautiously due to the influence of other foreign ions in volume and alite-type.  相似文献   

15.
The reversible control of the thickness of polymer thin films was investigated using (meth)acrylic polymers containing photoreactive coumarin derivative units in the side chain. Coumarin derivative units underwent dimerization and the reverse-dimerization by photoirradiation and were used as a reversible cross-linking point. The homopolymer of 7-methacryloyloxy-4-methylcoumarin (Tg = 194 °C) did not cause changes in film thickness after photoreactions. The homopolymer of 7-(2′-acryloyloxyethoxy)-4-methylcoumarin (AEMC) (Tg = 89 °C) decreased 19% of film thickness by photodimerization and 73% of the decreased thickness was recovered after the reverse-dimerization and the subsequent thermal annealing at 130 °C. The reverse-dimerization of the copolymer of AEMC and n-butyl acrylate (AEMC content = 19 mol%, Tg = 11 °C) resulted in 53% of recovery from the decreased film thickness without annealing. The mobility of polymer main-chain was revealed to be essential factor to change film thickness by photoreactions. Photodimerization of coumarin derivative units in low glass transition temperature (Tg) tended to proceed faster than in high Tg polymers and resulted in larger decrease in film thickness.  相似文献   

16.
The nucleation and crystallization of MgO-B2O3-SiO2 (MBS) glass were studied by means of a non-isothermal, thermal analysis technique, X-ray diffraction and scanning electron microscopy. The temperature range of the nucleation and the temperature of the maximum nucleation rate for MBS glass were determined from the dependences of the inverse temperature at the DSC peak (1/Tp) and the maximum intensity of the exothermic DSC crystallization peak ((δT)p) on the nucleation temperature (Tn). For MBS glass the nucleation occurred at 600-750 °C, with the maximum nucleation rate at 700 °C, whereas the nucleation and crystal growth processes overlapped at 700 °C < T ≤ 750 °C. The analyses of the non-isothermal data for the bulk MBS glass using the most common models (Ozawa, Kissinger, modified Kissinger, Ozawa-Chen, etc.) revealed that the crystallization of Mg2B2O5 was three-dimensional bulk with a diffusion-controlled crystal growth rate, that n = m = 1.5 and that the activation energy for the crystallization was 410-440 kJ/mol.  相似文献   

17.
18.
Poly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) (PMMA-PEO-PMMA) triblock copolymers were synthesized using atom transfer radical polymerization (ATRP) and halogen exchange ATRP. PEO-based macroinitiators with molecular weight from Mn = 2000 to 35,800 g/mol were used to initiate the polymerization of MMA to obtain copolymers with molecular weight up to Mn = 82,000 g/mol and polydispersity index (PDI) less than 1.2. The macroinitiators and copolymers were characterized by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. The melting temperature and glass transition temperature of the copolymers were measured by differential scanning calorimetry (DSC). Crystallinities of the PEO blocks were determined from the WAXS patterns of both homopolymers and block copolymers, which revealed the fragmentation of PEO blocks due to the folding of the PMMA chains. Interestingly, the fragmentation was less pronounced when cast on surfaces compared to that in bulk, as measured by GISAXS. Solvent casting was used to control the morphology of the copolymers, permitting the formation of various states including amorphous, induced micellar with a PMMA core and flower-like PEO arms, and a cross-linked gel. Atomic force microscopy (AFM) was used to visualize the different copolymer morphologies, showing micellar and amorphous states.  相似文献   

19.
Weipu Zhu 《Polymer》2005,46(19):8379-8385
Rare earth (Nd, Y, La) p-tert-butylcalix[n]arene (n=4, 6, and 8) complexes alone have been developed to catalyze random and block copolymerizations of trimethylene carbonate (TMC) and 2,2-dimethyltrimethylene carbonate (DTC). The random or block structure and thermal behavior of the copolymers have been characterized by SEC, NMR, DSC, XRD and PLM. Random copolymer with Mw of 14,100 and Mw/Mn of 1.36 was prepared by neodymium p-tert-butylcalix[6]arene complex under the conditions: [TMC+DTC]0/[Nd]=400, 80 °C, 8 h. The reactivity ratios of TMC and DTC are measured to be rTMC=4.68 and rDTC=0.163, respectively. Random copolymerization could be well designed by the feeding ratio to prepare copolymers with controlled Tm and Tg. Only 8% TMC units in the polymer chain destroyed the crystallization of PDTC showing no Tm of the copolymer in the DSC analysis.  相似文献   

20.
Homogeneous atom transfer radical polymerization of methyl methacrylate (MMA) under microwave irradiation (MI) with low concentration of initiating system [ethyl 2-bromobutyrate (EBB)/CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)] was successfully carried out in N,N-dimethylformamide (DMF) at 69 °C. Plots of ln ([M]0/[M]) vs. time and molecular weight evolution vs. conversion showed a linear dependence. A 27.3% conversion for a polymer with number-average molecular weight (Mn) of 57,280 and a polydispersity index (PDI) of 1.19, was obtained under MI (360 W) with the ratio of [MMA]0/[EBB]0/[CuCl]0/[PMDETA]0=2400/1/2/2 in only 150 min; but 963 min was needed under conventional heating (CH) process to reach a 26.0 % conversion (Mn=63,990 and PDI=1.14) under identical polymerization conditions, indicating a significant enhancement of the polymerization rate under MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号