首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Polymer Composites》2017,38(8):1571-1578
The effects of electric fields on the filler response dynamics and electrical percolation of poly(ethylene succinate)/multiwall carbon nanotube (MWCNT) composites are studied. When subjected to AC electric fields in their melt state, PESu/MWCNT composites exhibit dramatic improvements in their transverse electrical conductivity. More importantly, the elevated conductivity values are preserved after matrix solidification. Overall, the experimental results show that the electrified composites exhibit the same electrical conductivity levels as their non‐electrified counterparts at approximately threefold less filler content. The dynamics of the insulator‐to‐conductor transition under an electric field also are studied for these composites and correlate reasonably well with operating parameters, such as electric field intensity, matrix viscosity, and filler content through a relatively simple model. Such a model can serve as an enabling tool in the determination of process conditions for the manufacturing of electrically conducting MWCNT/polymer composites. POLYM. COMPOS., 38:1571–1578, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
The characteristics of network formation of multiwall carbon nanotubes (MWCNTs) inside ethylene–octene copolymer (EOC) melts under an alternating current (AC) electric field and the resulting electrical conductivity improvements are studied by combining dynamic and steady state resistivity measurements. Fine MWCNT dispersion during melt compounding of the samples is accomplished by means of a novel non-specific, non-covalent functionalization method. It is found that the electrified composite films exhibit nanotube assembly into columnar structures parallel to the electric field, accompanied by dramatic increases in electrical conductivity up to eight orders of magnitude. Experimentally acquired resistivity data are used to derive correlations between the characteristic insulator-to-conductor transition times of the composites and process parameters, such as electric field strength (E), polymer viscosity (η) and nanotube volume fraction (ϕ). Finally, a criterion for the selection of (η, E, C) conditions that enable MWCNT assembly under an electric field controlled regime (i.e., minimal Brownian motion-driven aggregation effects) is developed. The correlations presented herein not only provide insights in the MWCNT assembly process, but can also guide the experimental design in future studies on electrified composites or assist in the selection of process parameters in composites manufacturing.  相似文献   

3.
The fabrication of carbon nanotube/polyvinyl chloride (PVC) composites and a study of their thermal and mechanical properties are reported. Phosphorylated multiwalled carbon nanotube (p-MWCNT) and pristine MWCNT were used. The MWCNT were embedded in the polymer matrix through melt mixing. The phosphorylation of the MWCNT and their dispersion in the PVC matrix were characterized by scanning and transmission electron microscopy and Raman spectroscopy. Thermal analysis by thermal gravimetric analysis and differential scanning calorimetry, showed an increase in glass transition temperature and melting temperature for the composites with respect to pure PVC. The modulus of the MWCNT/PVC composites increased while there was a reduction in their tensile strength, indicating a decrease in polymer toughness.  相似文献   

4.
In this work the thermal properties of poly (l-lactide)/multi-wall carbon nanotube (PLLA/MWCNT) composites have been investigated. Thermal conductivity was determined after measuring specific heat capacity (Cp), thermal diffusivity (D) and bulk density (ρ) of composites. Thermal conductivity rises up to 0.345 W/m K at 5 wt.% after reaching a minimum value of about 0.12 W/m K at 0.75 wt.%. In order to understand the heat-conduction process, experimentally obtained thermal conductivities were fitted to an existing theoretical model. The much lower thermal conductivity of composites compared with the value estimated from the intrinsic thermal conductivity of the nanotubes and their volume fraction could be explained in terms of the obtained large thermal resistance (Rk) of 1.8 ± 0.3 × 10?8 m2 K/W at nanotube–matrix interface. The CNT dispersion in the composites was analyzed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Although the thermal resistance dramatically reduces the estimated bulk thermal conductivity of composites, the existence of an interconnected conductive nanotube network for thermal diffusion in PLLA/MWCNT composites demonstrates that the addition of carbon nanotubes represents an efficient strategy in order to successfully enhance the thermal conductivity of insulator polymers.  相似文献   

5.
A high‐density polyethylene (HDPE) masterbatch containing 20.2 wt% multiwalled carbon nanotubes (MWNTs) was melt diluted with neat HDPE using two different methods: a twin screw microcompounder and a single‐screw extruder. The electrical properties of these composites were assessed using bulk electrical conductivity measurements, their mechanical properties were evaluated using tensile tests and dynamic mechanical analysis (DMA), and percent crystallinity was determined by wide angle x‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). A percolation threshold (pc) of 4.5 wt% MWNTs was found in compression‐molded samples. Extruded samples were prepared with nanotube concentrations below and above the compression‐molded percolation threshold (2 and 7 wt% MWNTs) and passed through the extruder twice before entering a low‐shear melt annealing zone. Different melt annealing times were used and their effects on the electrical and mechanical properties of the resulting quench‐cooled composites were evaluated. Results showed that extruded composites were nonconductive, indicating that a conductive nanotube network did not form on the time scale of these experiments. Annealing time also did not affect significantly the mechanical properties of the resulting solid composites. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

6.
Poly(methyl methacrylate)/multiwalled carbon nanotubes (PMMA/MWCNT) composites were prepared by two different methods: melt mixing and solution casting. For solution casting, two different solvents, toluene and chloroform, were used to prepare PMMA solutions with different concentrations of MWCNT. The dispersion of the CNT in the composite samples was verified by scanning electron microscopy. For the nanocomposites prepared by both methods, the electrical conductivity increased with increasing filler content, showing typical percolation behavior. In addition, an increase of 11 orders of magnitude in the electrical conductivity relative to the matrix conductivity was determined by broadband dielectric spectroscopy and four probe conductivity measurements. A maximum value of σDC ~ 1.6 S/cm was found for the highest filler loaded sample (3.67 vol %), which was prepared by solution casting from toluene. Nanoindentation analysis was used to characterize the surface mechanical properties of the composite samples prepared by the different methods. Indentation tests were performed at various penetration depths, and it was revealed that the melt mixing process resulted in stiffer neat PMMA samples compared to the solution casted PMMA samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41721.  相似文献   

7.
Multiwalled carbon nanotubes (MWCNTs) were synthesized using chemical vapor deposition and poly(trimethylene terephthalate) (PTT)/MWCNT composites with varying amounts of MWCNTs were prepared by melt compounding using DSM micro‐compounder. Morphological characterization by SEM and TEM showed uniform dispersion of MWCNTs in PTT matrix upto 2% (w/w) MWCNT loading. Incorporation of MWCNTs showed no effect on percent crystallinity but affected the crystallite dimensions and increased the crystallization temperature. Dynamic mechanical characterization of composites showed an increase in storage modulus of PTT upon incorporation of MWCNTs above glass transition temperature. The electrical conductivity of PTT/MWCNT composites increased upon incorporation of MWCNTs and percolation threshold concentration was obtained at a loading of MWCNTs in the range of 1–1.5% (w/w). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Polyethylene multiwalled carbon nanotube composites   总被引:4,自引:0,他引:4  
Polyethylene (PE) multiwalled carbon nanotubes (MWCNTs) with weight fractions ranging from 0.1 to 10 wt% were prepared by melt blending using a mini-twin screw extruder. The morphology and degree of dispersion of the MWCNTs in the PE matrix at different length scales was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). Both individual and agglomerations of MWCNTs were evident. An up-shift of 17 cm−1 for the G band and the evolution of a shoulder to this peak were obtained in the Raman spectra of the nanocomposites, probably due to compressive forces exerted on the MWCNTs by PE chains and indicating intercalation of PE into the MWCNT bundles. The electrical conductivity and linear viscoelastic behaviour of these nanocomposites were investigated. A percolation threshold of about 7.5 wt% was obtained and the electrical conductivity of PE was increased significantly, by 16 orders of magnitude, from 10−20 to 10−4 S/cm. The storage modulus (G′) versus frequency curves approached a plateau above the percolation threshold with the formation of an interconnected nanotube structure, indicative of ‘pseudo-solid-like’ behaviour. The ultimate tensile strength and elongation at break of the nanocomposites decreased with addition of MWCNTs. The diminution of mechanical properties of the nanocomposites, though concomitant with a significant increase in electrical conductivity, implies the mechanism for mechanical reinforcement for PE/MWCNT composites is filler-matrix interfacial interactions and not filler percolation. The temperature of crystallisation (Tc) and fraction of PE that was crystalline (Fc) were modified by incorporating MWCNTs. The thermal decomposition temperature of PE was enhanced by 20 K on addition of 10 wt% MWCNT.  相似文献   

9.
《Polymer》2013,54(22):6165-6176
In this work, the localization of functionalized multi-walled carbon nanotubes (MWCNT) with random copolymers of methyl methacrylate and styrene (P(MMA-co-S)) in poly(styrene-co-acrylonitrile)/poly(2, 6-dimethyl-1,4-phenylene ether) blends (SAN/PPE) and its influence on morphological, rheological and dielectric properties of the composites were investigated. P(MMA-co-S) copolymers were grafted onto MWCNT via atom transfer radical polymerization (ATRP). The molecular weight of the copolymers was adjusted by controlling the time of reaction. In SAN/PPE blends, MWCNT grafted with low molecular weight copolymers were predominantly located at the interface of the blend and a few individual tubes were dispersed in the PPE phase. Aggregation of MWCNT was observed nearby the interfacial region because of micellization of grafted copolymers. Aggregation was more pronounced with increasing molecular weight of the grafted P(MMA-co-S) copolymer. In the melt, the composite containing MWCNT with low molecular weight copolymers had higher dynamic moduli than the one with pristine MWCNT. An increasing molecular weight of grafted copolymer led to a softening effect which resulted in a reduction of the moduli of the composite. Although a pronounced enhancement was observed for the composites with pristine MWCNT, only a small increase in electrical conductivity was achieved by adding functionalized MWCNT owing to the poor network formed by functionalized MWCNT in the blends.  相似文献   

10.
Five commercially available multi-walled carbon nanotubes (MWNTs), with different characteristics, were melt mixed with polycarbonate (PC) in a twin-screw micro compounder to obtain nanocomposites containing 0.25-3.0 wt.% MWNT. The electrical properties of the composites were assessed using bulk electrical conductivity measurements, the mechanical properties of the composites were evaluated using tensile tests and dynamic mechanical analysis (DMA), and the thermal properties of the composites were investigated using differential scanning calorimetry (DSC). Electrical percolation thresholds (pcs) were observed between 0.28 wt.% and 0.60 wt.%, which are comparable with other well-dispersed melt mixed materials. Based on measurements of diameter and length distributions of unprocessed tubes it was found that nanotubes with high aspect ratios exhibited lower pcs, although one sample did show higher pc than expected (based on aspect ratio) which was attributed to poorer dispersion achieved during mixing. The stress-strain behavior of the composites is only slightly altered with CNT addition; however, the strain at break is decreased even at low loadings. DMA tests suggest the formation of a combined polymer-CNT continuous network evidenced by measurable storage moduli at temperatures above the glass transition temperature (Tg), consistent with a mild reinforcement effect. The composites showed lower glass transition temperatures than that of pure PC. Lowering of the height of the tanδ peak from DMA and reductions in the heat capacity change at the glass transition from DSC indicate that MWNTs reduced the amount of polymer material that participates in the glass transition of the composites, consistent with immobilization of polymer at the nanotube interface.  相似文献   

11.
Poly(vinyl acetate) (PVAc) copolymer latex-based composites were prepared with multi-walled carbon nanotubes (MWCNT), stabilized with sodium deoxycholate (DOC) or meso-tetra(4-carboxyphenyl) porphine (TCPP). SEM images show that a segregated MWCNT network developed during drying, which resulted in relatively low percolation thresholds (1.62 and 2.17 wt.% MWCNT for DOC and TCPP, respectively). The electrical conductivity (σ) of TCPP-stabilized composites is very similar to that of DOC-stabilized, while the thermopower (or Seebeck coefficient (S)) is five times as large. This enhanced thermopower suggests the MWCNT:TCPP/PVAc composite will have an order of magnitude greater power factor (S2σ), which is an important measure of efficiency for thermoelectric materials (i.e., materials capable of converting a thermal gradient to a voltage). The thermal conductivity of these composites remains comparable to typical polymeric materials due to numerous tube–tube connections that act as phonon scattering centers. The universality of this approach was confirmed using much more electrically conductive double-walled carbon nanotube-filled composites that showed similar improvement with TCPP stabilization. It is possible that other porphyrin derivatives, or semiconducting molecules capable of stabilizing nanotubes in water, could be used to further enhance the Seebeck coefficient and improve the ability of these composites to convert waste heat into electricity.  相似文献   

12.
The electrical and dielectric properties of polyamide 6 (PA6)/multi-walled carbon nanotubes (MWCNT) nanocomposites prepared by melt mixing were investigated by employing dielectric relaxation spectroscopy in broad frequency (10?2–106 Hz) and temperature ranges (from ?150 to 150 °C). Transmission electron microscopy revealed a good state of CNT dispersion in the polymeric matrix. The percolation threshold (pc) was found to be 1.7 vol.% by using the dependence of both dc conductivity and critical frequency (fc) from dc to ac transition on vol.% concentration in MWCNT. The actual aspect ratio of the nanotubes in the nanocomposites was calculated using a theoretical model (proposed by Garboczi et al.) and the obtained value was correlated with the pc value according to the excluded volume theory. Additionally, the contact resistance (Rc) between the conductive nanotubes was found to be ~105 Ω. Investigation of the temperature dependence of conductivity revealed a charge transport which is controlled by thermal fluctuation-induced tunneling for temperatures up to the glass transition. Finally, it was shown that the addition of nanotubes has no significant influence on the relaxation mechanisms of the PA6 matrix.  相似文献   

13.
A homogeneous dispersion of multi-walled carbon nanotubes (MWCNTs) in syndiotactic polystyrene (sPS) is obtained by a simple solution dispersion procedure. MWCNTs were dispersed in N-methyl-2-pyrrolidinone (NMP), and sPS/MWCNT composites are prepared by mixing sPS/NMP solution with MWCNT/NMP dispersion. The composite structure is characterized by scanning electron microscopy and transmission electron microscopy. The effect of MWCNTs on sPS crystallization and the composite properties are studied. The presence of MWCNTs increases the sPS crystallization temperature, broadens the crystallite size distribution and favors the formation of the thermodynamically stable β phase, whereas it has little effect on the sPS γ to α phase transition during heating. By adding only 1.0 wt.% pristine MWCNTs, the increase in the onset degradation temperature of the composite can reach 20 °C. The electrical conductivity is increased from 10−10∼−16 (neat sPS) to 0.135 S m−1 (sPS/MWCNT composite with 3.0 wt.% MWCNT content). Our findings provide a simple and effective method for carbon nanotube dispersion in polymer matrix with dramatically increased electrical conductivity and thermal stability.  相似文献   

14.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

15.
采用熔融复合法制备并研究了聚己二酰间苯二甲胺/多壁碳纳米管(MXD6/MWCNT)复合材料的导电性能。结果表明,MXD6和MWCNT之间的相容性较差,体系中大部分MWCNT倾向于处于团聚状态,使MWCNT构建导电网络的效率大大降低;而添加有机蒙脱土(OMMT)可显著提高复合材料的导电性能,如在MWCNT含量为2份(质量份,下同)的体系中,添加OMMT可使体系的体积电阻率急剧降低7个数量级;OMMT的作用机制在于其在材料混炼过程中,使MWCNT不断分散并承载于更新的OMMT粒子表面上,形成空间上具有高次结构的结构形态,因而极大地改善了导电网络的构筑效率。  相似文献   

16.
Poly(ethylene terephthalate) (PET)-based nanocomposites with graphene or multi-wall carbon nanotubes (MWCNT) were prepared by melt mixing. Aspect ratio, Af, and interparticle distance, λ, of graphene in the nanocomposites were obtained from melt rheology and transmission electron microscopy respectively. λ of PET/graphene nanocomposites was much smaller than λ in PET/MWCNT. For PET/graphene with highest Af, λ became <1 μm at more than 0.5 wt% graphene. Non-isothermal crystallization behavior from the melt was investigated by differential scanning calorimetry. The crystallization temperatures suggest that the nucleation effect of graphene was stronger than that of MWCNT. The half crystallization time of PET/graphene became longer than PET/MWCNT with increasing graphene loading, suggesting that confinement by graphene suppressed the crystal growth rate. XRD analysis indicated that smaller crystals formed in PET/graphene than in PET/MWCNT. From Raman spectroscopy, the π–π interaction between PET and graphene was stronger than that between PET and MWCNT. This stronger interaction in PET/graphene appears to result in formation of crystals with higher perfection.  相似文献   

17.
Aligned multi-walled carbon nanotube (MWCNT)/polymer composite films are prepared by solution casting in the presence of an alternating electric field. Application of 7 kV/m at a frequency of 60 Hz to the polymer composite melt induces MWCNT alignment in the direction of the applied field, which is maintained after polymer crystallization. The electrical conductivity and piezoresistive response of electric-field-aligned and randomly oriented 0.1–0.75 wt% MWCNT/polysulfone films are evaluated. Electrical conductivity is 3–5 orders of magnitude higher for composites with electric-field-aligned MWCNTs than for randomly oriented composites. MWCNT alignment inside the polymer matrix also increases the film piezoresistive sensitivity, enhancing the strain sensing capabilities of the composite film.  相似文献   

18.
In this work, we present thermoplastic nanocomposites of polycarbonate (PC) matrix with hybrid nanofillers system formed by a melt‐mixing approach. Various concentrations of multi‐walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GnP) were mixed in to PC and the melt was homogenized. The nanocomposites were compression molded and characterized by different techniques. Torque dependence on the nanofiller composition increased with the presence of carbon nanotubes. The synergy of carbon nanotubes and GnP showed exponential increase of thermal conductivity, which was compared to logarithmic increase for nanocomposite with no MWCNT. Decrease of Shore A hardness at elevated loads present for all investigated nanocomposites was correlated with the expected low homogeneity caused by a low shear during melt‐mixing. Mathematical model was used to calculate elastic modulus from Shore A tests results. Vicat softening temperature (VST) showed opposite pattern for hybrid nanocomposites and for PC‐MWCNT increasing in the latter case. Electrical conductivity boost was explained by the collective effect of high nanofiller loads and synergy of MWCNT and GnP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42536.  相似文献   

19.
Multi-walled carbon nanotube-epoxy composites are modified with titania nanoparticles in order to obtain multiphase nanocomposites with an enhanced dispersion of carbon nanotubes. The dispersion is monitored using rheological and electrical conductivity measurements. An increase in dispersion quality can be correlated to an increased storage shear modulus of the uncured suspensions and to a decreased electrical conductivity in the bulk nanocomposite. The newly formed microstructure is revealed using transmission electron and optical microscopies. Due to chemical interactions between both types of nanoparticles an attractive potential is generated leading to a significant rearrangement in the particle network structure. Besides an enhanced dispersion, the hybrid structure leads to synergistic effects in terms of the glass transition of the nanocomposites. Although a decrease of the glass transition temperature (Tg) is observed for the nanocomposites containing only one type of filler, the combination of titania and carbon nanotubes into a hybrid structure reduces the decrease of Tg, thus demonstrating the potential of such hybrid structures as fillers for multi-functional epoxy nanocomposites.  相似文献   

20.
Ha-Da Bao 《Polymer》2008,49(17):3826-3831
Electrically conductive polypropylene (PP)/multi-walled carbon nanotube (MWCNT) composites containing electrically inert particulate filler calcium carbonate (CaCO3) have been prepared in a rotational rheometer. A significant reduction in electrical resistivity was found with the addition of CaCO3. The concept of effective concentration of MWCNTs is proposed to quantitatively evaluate the effect of CaCO3. A master curve was achieved by plotting electrical conductivity (or resistivity) data of various composite systems, with or without CaCO3, against their effective volume fraction of MWCNT, validating the concept of effective concentration. Similar results were obtained from investigations on MWCNT composite systems of different inert fillers, including talc and wollastonite, and host polymers, such as polyoxymethylene and polyamide, demonstrating the generality of the present observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号