首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional chemical modifications on poly(ethylene terephthalate) (PET) fibers via radical graft polymerization could be controlled by managing mutual interactions and affinities between different components in the grafting reaction system. Hansen solubility parameters was used as a tool to quantify affinities of related agents and the polymer, and provided reliable results. The latest results proved the practicality of using Hansen solubility parameters in controlling radical graft polymerizations on surface modifications of PET fibers. Four different monomers with different hydrophilic properties in different solvent and initiator systems were examined, and results confirmed that interactions of initiator‐PET, initiator‐solvent, monomer‐PET, monomer‐solvent, and monomer‐initiator play important roles in determining the grafting reaction efficiency. Results revealed that for the selected grafting systems studied, hydrophilic monomers presented overall favoring affinities toward PET leading to higher grafting yields compared to hydrophobic monomers. The results have instructive impact to commercial applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45990.  相似文献   

2.
To control the surface wettability of nano-sized silica surface, the postgrafting of hydrophilic and hydrophobic polymers to grafted polymer chains on the surface was investigated. Polymers having blocked isocyanate groups were successfully grafted onto nano-sized silica surface by the graft copolymerization of methyl methacrylate (MMA) with 2-(O-[1′-methylpropylideneamino]caboxyamino)ethyl methacrylate (MOIB) initiated by azo groups previously introduced onto the surface. The blocked isocyanate groups of poly(MMA-co-MOIB)-grafted silica were stable in a desiccator, but isocyanate groups were readily regenerated by heating at 150 °C. The hydrophilic polymers, such as poly(ethylene glycol) (PEG) and poly(ethyleneimine) (PEI), were postgrafted onto the poly(MMA-co-MOIB)-grafted silica by the reaction of functional groups of PEG and PEI with pendant isocyanate groups of poly(MMA-co-MOI)-grafted silica to give branched polymer-grafted silica. The percentage of grafting increased with increasing molecular weight of PEG, but the number of postgrafted chain decreased, because of steric hindrance. The hydrophobic polymers, such as poly(dimethylsiloxane) were also postgrafted onto poly(MMA-co-MOI)-grafted silica. It was found that the grafting of hydrophobic polymer and the postgrafting of hydrophilic polymer branches readily controls the wettability of silica surface to water.  相似文献   

3.
The surface grafting of polymers onto a glass plate surface was achieved by the polymerization of vinyl monomers initiated by initiating groups introduced onto the surface. Azo groups were introduced onto the glass plate surface by the reaction of 4,4′-azobis(4-cyanopentanoic acid) with isocyanate groups, which were introduced by the treatment with tolylene-2,4-diisocyanate. The radical polymerization of various vinyl monomers was initiated by azo groups introduced onto the glass plate surface and the corresponding polymers were grafted from the surface: The surface grafting of polymers was confirmed by IR spectra, and the contact angle of surface, with water. The contact angle of the glass plate increased by the grafting of hydrophobic polymers, but decreased by the grafting of hydrophilic polymers. The radical postpolymerization was successfully initiated by the pendant peroxycarbonate groups of grafted polymer on the surface to give branched polymer-grafted glass plate. The cationic polymerization of vinyl monomers was also successfully initiated by benzylium perchlorate groups introduced onto the glass plate surface and the corresponding polymers were grafted onto the surface. The contact angle of the glass plate surface obtained from the cationic polymerization of styrene was larger than that obtained from the radical polymerization. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2165–2172, 1997  相似文献   

4.
The introduction of peroxycarbonate groups onto a silica surface and the graft polymerization of vinyl monomers initiated by peroxycarbonate groups introduced onto a silica surface were investigated. The introduction of peroxycarbonate groups onto a silica surface was achieved by Michael addition of amino groups introduced onto the silica surface to t‐butylperoxy‐2‐methacryloyloxyethylcarbonate (HEPO). The amount of peroxycarbonate groups was determined to be 0.17 mmol/g. The graft polymerization of various vinyl monomers such as styrene (St), N‐vinyl‐2‐pyrrolidinone (NVPD), and 2‐hydroxyethyl methacrylate (HEMA) was initiated by peroxycarbonate groups introduced onto the silica surface to give the corresponding polymer‐grafted silicas. The percentage of poly(St)‐grafting reached about 120% after 5 h. This means that 1.20 g of poly(St) is grafted onto 1.0 g of silica. The surface of poly(St)‐grafted silica shows a hydrophobic nature, but the surfaces of poly(NVPD) and poly(HEMA)‐grafted silica show a hydrophilic nature. Furthermore, the poly(St)‐grafted silica was found to give a stable colloidal dispersion in a good solvent for the grafted polymer. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1491–1497, 1999  相似文献   

5.
Lang Li  Charles M. Lukehart 《Carbon》2006,44(11):2308-2315
Ultradispersed diamond (UDD)/polymer brushes having excellent solution dispersibilities are prepared by atom transfer radical polymerization (ATRP) using the “grafting-from” synthesis strategy. ATRP initiators, covalently attached to oxidized surface carbon atoms of UDD aggregates using esterification chemistry, initiate polymerization of methacrylate monomers to form hydrophobic UDD/poly(iso-butyl methacrylate) and UDD/poly(tert-butyl methacrylate) polymer brushes. Acid hydrolysis of a UDD/poly(tert-butyl methacrylate) polymer brush affords a hydrophilic UDD/poly(methacrylic acid) polymer brush. Based on surface area measurements and GPC data, the calculated surface density of a representative UDD/polymer brush material is ca. five polymer chains/100 nm2. A wide variety of UDD/polymer brush materials having controlled dispersibility and functional group reactivity are now potentially available using this synthesis strategy.  相似文献   

6.
Crude wood fibers represent a wide class of renewable resources. The surface modification of such materials via covalent grafting of polymer offers new surface properties with non-leaching coating. The grafting of the polymer chains was achieved by surface-initiated controlled radical polymerization through a grafted xanthate chain transfer agent. Macromolecular design via interchange of xanthate (MADIX) technique was chosen to graft poly(vinyl acetate), polystyrene, poly(n-butyl acrylate) and poly(4-vinylbenzyl chloride)-polystyrene amphiphilic cationic copolymers. Water contact angle measurements highlighted the hydrophobization of the wood fiber surface with a nanoscaled polymer monolayer indicating the appropriate coverage of the fiber. X-ray photoelectron spectroscopy showed the successful grafting of the polymer after drastic washing procedure. The quaternization of the grafted polystyrene-co-poly(4-vinyl benzyl chloride) copolymers with tertiary amine allows the introduction of biocide quaternary ammonium functions while preserving the hydrophobic character of the modified wood fiber when introducing a long alkyl chain in the statistical copolymer. Finally, the cationic copolymer was subjected to Coniophora Puteana to evaluate its propensity to limit the fungi expansion.  相似文献   

7.
We modified hydrophobic poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBHV) films with hydrophilic chains to control their surface properties. We designed and investigated surface‐initiated atom transfer radical polymerization (SI‐ATRP) to modify the PHBHV films by grafting poly(2‐hydroxyethyl methacrylate) (PHEMA) from the surface. This method consisted of two steps. In the first step, amino functions were formed on the surface by aminolysis; this was followed by the immobilization of an atom transfer radical polymerization initiator, 2‐bromoisobutyryl bromide. In the second step, the PHEMA chains were grafted to the substrate by a polymerization process initiated by the surface‐bound initiator. The SI‐ATRP technique was expected to favor a polymerization process with a controlled manner. The experimental results demonstrate that the grafting density was controlled by the reaction conditions in the first step. The grafted films were analyzed by Fourier transform infrared spectroscopy, contact angle testing, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy. The results show that grafted chains under the SI‐ATRP method were preferentially located on the surface for surface grafting and in the bulk for conventional free‐radical polymerization initiated by benzoyl peroxide. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Polythiophene (PTH) and poly(3‐methyl thiophene) (PMT) films were electrochemically polymerized in an electrolyte solution of boron fluoride–ethyl ether. Ozone‐pretreated PTH and PMT films were subjected to UV‐light‐induced graft copolymerization with different monomers, including poly(ethylene glycol) monomethacrylate, acrylic acid, and glycidyl methacrylate. Surface grafting with the hydrophilic polymers gave rise to more hydrophilic PTH and PMT films. The structure and chemical composition of each copolymer surface were studied by X‐ray photoelectron spectroscopy. The surface grafting with the hydrophilic polymers resulted in a more hydrophilic PTH film. The dependence of the density of surface grafting and the conductivities of the grafted PTH and PMT films on the ozone pretreatment was also studied. A large amount of the grafted groups at the surface of the PTH and PMT films remained free for further surface modification and functionalization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
In the present work, cellulose fibers were modified by grafting with poly(lauryl acrylate) and poly(octadecyl acrylate). The grafted materials were prepared by polymerization of the corresponding monomers via surface initiated atom transfer radical polymerization, starting from cellulose papers previously modified with 2‐bromoisobutyryl groups. The polymerizations were carried out in the presence of ethyl‐2‐bromoisobutyrate, as a sacrificial initiator, added to control the molecular weight of the anchored segments, and polymerization kinetics. The grafting of both polymers was confirmed by infrared spectroscopy and elemental analysis. The effect of grafting these polymers on the thermal stability, morphology, and surface properties of cellulose fibers was studied using thermogravimetric analysis, scanning electron microscopy, and measuring water contact angle, respectively. The results reveal that grafting poly(lauryl acrylate) and poly(octadecyl acrylate) to cellulose confers the filter paper a hydrophobic character, and increases its affinity with pyrene, allowing the removal of this pollutant from water. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44482.  相似文献   

10.
In this work polyamide thin-film composite membrane (TFC) surface modified via Michael addition grafting of a hydrophilic hyperbranched poly(amine ester). For this purpose, amine-rich polyamide layer formed by interfacial polymerization on a polyethersulfone support, and then acrylated hyperbranched poly(amine ester) (AC-HBPAE) was used as grafting moiety. The membrane surface was characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and water contact angle techniques. Field emission scanning electron microscopy (FE-SEM) was used to evaluate surface and cross-section morphology of samples. Filtration performances and bio-fouling resistance were also studied using a nanofiltration cell. Surface chemical composition and contact angle indicated the successful grafting of acrylated poly(amine ester) to the membrane surface. The results also indicated there is a solid relationship between acrylation percentage of hyperbranched polymer and membrane properties such as fouling resistance. A uniform and hydrophilic surface observed for TFC membrane modified with 5% acrylated hyperbranched poly(amine ester).  相似文献   

11.
The grafting of vinyl polymers onto the surface of polymethylsiloxane-coated titanium dioxide modified with alcoholic hydroxyl groups (Ti/Si–R–OH) were investigated. The introduction of azo and trichloroacetyl groups onto the surface of Ti/Si–R–OH was achieved by the reaction of the surface alcoholic hydroxyl groups with 4,4′-azobis(4-cyanopentanoic acid) and trichloroacetyl isocyanate, respectively. The radical polymerizations of vinyl monomers were successfully initiated by the azo groups introduced onto the surface and by the system consisting of Mo(CO)6 and Ti/Si–R–COCCl3. During the polymerization, the corresponding polymers were effectively grafted onto the titanium dioxide surface through propagation from surface radicals formed by the decomposition of azo groups and by the reaction of Mo(CO)6 with trichloroacetyl groups on the surface. The percentage of grafting and grafting efficiency in the graft polymerization initiated by the system consisting of Ti/Si–R–COCCl3 and Mo(CO)6 were much larger than those initiated by azo groups. The polymer-grafted titanium dioxide was found to produce a stable colloidal dispersion in good solvents for the grafted polymer. The dispersibility of poly(N,N-diethylacrylamide)-grafted titanium dioxide in water was controlled by temperature. In addition, the wettability of the surface of titanium dioxide to water was readily controlled by grafting of hydrophilic or hydrophobic polymers.  相似文献   

12.
Benzophenone-coated low-density polyethylene (LDPE) was grafted with acrylic acid (AA), methacrylic acid (MA), acrylonitrile (AN), and methyl methacrylate (MMA) in an aqueous medium by photoirradiation. The first-step graft samples thus prepared with a grafting of about 50% were subjected to second-step photografting with acrylamide (AAm). On AA- and MA-grafted LDPE samples, the second-step grafting of AAm was very smooth, and a high level of grafting up to 800% was attained with ease. On the other hand, grafted LDPE samples employing hydrophobic monomers, AN and MMA, had a lower percent of grafting than those with hydrophilic monomers, AA and MA. By ESR study, a thermally stable radical was found in the first-step graft sample irradiated with light of λ > 330 nm. Mechanisms for the formation of such a radical in the first-step graft sample are proposed, and the contribution of the radical to the second-step grafting is discussed.  相似文献   

13.
Surface grafting of functional polymers is an effective method to alter material properties and degradation behavior. Two different substrate shapes of poly(l ‐lactide) (PLLA), i.e., films and microparticles, were surface‐grafted with hydrophilic monomers, and their surface degradation was monitored. Surface grafting with a hydrophilic and acidic polymer graft [acrylic acid (AA)] induced large alterations in the surface morphology and topography of the films. In contrast, hydrophilic and neutral polymer grafts [acrylamide (AAm)] had no significant effect on the surface degradation behavior, while the PLLA reference and co‐monomeric (AA/AAm) polymer‐grafted samples exhibited intermediate surface degradation rates. The grafted PAA chains induced a local acidic environment on the surface of the substrates, which in turn catalyzed the surface degradation process. This effect was more pronounced in the films than in the microparticles. Thus, the nature of the grafted chains and substrate geometry were shown to affect the surface degradation behavior of PLLA substrates. © 2015 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42736.  相似文献   

14.
Stimuli‐responsive polymer materials (SRPs) have potential uses in drug delivery, tissue engineering, bioreactors, and cell‐surface adhesion control. Temperature‐responsive surfaces were fabricated by grafting poly(N‐isopropylacrylamide) (PNIPAM) onto nylon and polystyrene surfaces via a new procedure, i.e., He atmospheric plasma treatment followed by free radical graft copolymerization. The atmospheric plasma exhibits the activation capability to initiate graft copolymerization. The procedure is suitable for integration into a continuous manufacturing process. To reduce homopolymerization and enhance graft yield, Mohr's salt was added. The graft of PNIPAM was confirmed by Fourier transform infrared spectroscopy and atomic force microscopy. Dramatic water contact angle increase was found for PNIPAM‐grafted polymers at about 32°C, indicating the temperature sensitivity of the grafted surface, i.e., the change of surface from hydrophilic to hydrophobic when temperature increases above the lower critical solution temperature (LCST). The addition of Mohr's salt enhances the grafting reaction and the magnitude of temperature sensitivity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3614–3621, 2007  相似文献   

15.
The grafting of vinyl monomers is an important method for replacing hydrophilic hydroxyl groups present on the surface of natural fibers by hydrophobic polymer chains. It improves the compatibility of natural fibers with polymer matrixes during the fabrication of natural‐fiber‐reinforced polymer composites. This article deals with the graft copolymerization of acrylonitrile onto Agave americana fibers in air in the presence of ceric ammonium nitrate as a redox initiator. A maximum percentage grafting of 24% was obtained after the optimization of various reaction parameters, including the reaction time, temperature, and concentrations of nitric acid, initiator, and monomer. The graft copolymers obtained under the optimum conditions were then subjected to the evaluation of different physicochemical properties, including swelling behavior in different solvents, moisture absorption behavior under different humidity levels, and chemical resistance. The graft copolymers were further characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermal analysis (thermogravimetric analysis/differential thermal analysis), and X‐ray diffraction techniques. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The surface grafting of polymers onto carbon thin film deposited on a glass plate was achieved by two methods: the graft polymerization initiated by initiating groups introduced onto the surface; and the trapping of polymer radicals by surface aromatic rings of the thin film. It was found that the radical and cationic graft polymerization of vinyl monomers are initiated by azo and acylium perchlorate groups introduced onto the surface, respectively, and the corresponding polymers are grafted onto the surface: the surface grafting of polymers were confirmed by the contact angle of the surface with water. In addition, the anionic ring-opening alternating copolymerization of epoxides with cyclic acid anhydrides was found to be initiated by potassium carboxylate groups on the carbon thin film to give the corresponding polyester-grafted carbon thin film. On the other hand, polymer radicals formed by the decomposition of azo polymer, such as poly(polydimethylsiloxane-azobiscyanopentanoate) and poly(polyoxyethylene-azobiscyanopentanoate), were successfully trapped by the surface aromatic rings of carbon thin film and polydimethylsiloxane and polyoxyethylene were grafted onto the surface. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
To determine the scope of the grafting reaction, over 30 monomers were grafted to steer hide collagen and collagen films using ceric ammonium nitrate as initiator. High yields of apparent graft polymer were obtained with most acrylate and methacrylate esters. Yields were not changed greatly by employing the higher homologues. Moreover, monomers containing such diverse substituents as hydroxy, cyano, chloro, trifluoroethyl, or glycidyl groups may be grafted onto collagen. The presence of these functional groups in the products provides potential reaction centers to further modify the collagenous surface. Presence of vinyl polymer was confirmed by IR spectra. The large number of monomers of varying polarity which were found to undergo apparent grafting makes it possible to vary widely the surface properties of collagen. It was shown that certain monomers impart water and oil repellency to collagenous surfaces, whereas others increased the hydrophilicity or oleophilicity of the substrate. Thus, by proper selection of monomers, the desired degree of hydrophilic to hydrophobic or oleophilic to oleophobic balance of the collagen surface to suit specific applications can be obtained.  相似文献   

18.
Polymer brush coatings, consisting of polymer chains covalently attached to a surface and being less than a hundred nanometer thick, allow the creation of functional surfaces without altering the inherent bulk properties or appearance of a product. Surface properties depend on the type and length of the polymer used, as well as on the grafting density of the polymer brush. By making use of a polymeric primer layer that is covalently linked to the substrate and creates a uniform and highly functionalized surface, polymer brush coatings with high grafting densities can be created. In this paper we report the preparation of hydrophilic as well as hydrophobic brush coatings on different substrates through the use of a poly(acrylic acid) primer layer. In addition, hydrophilic poly(ethylene glycol) brush coatings thus produced were shown to decrease adhesion of marine bacteria.  相似文献   

19.
Grafting of polymer brushes from conducting polymer (CP) thin films by controlled radical polymerisation provides a versatile route for the synthesis of functional, electroactive surfaces, with applications in diverse fields. However, one of the drawbacks of this approach is the difficulty of upscaling the synthesis due to the need for specialised CP precursor monomers functionalised with initiation sites. We herein describe an alternative approach to the synthesis of CP‐based polymer brushes whereby atom transfer radical polymerisation initiation sites are attached to a macrodopant incorporated into CP films during electropolymerisation. The facile electropolymerisation of commonly studied CPs with an initiator‐functionalised macrodopant – poly[(styrene sulfonate)‐co‐(2‐bromopropionyloxyethyl methacrylate)] – is demonstrated. The composite polymer films thus synthesised were used as substrates for grafting of hydrophilic polymer brushes. Although poly(styrene sulfonate) is commonly used as a macrodopant in CP films, its initiator‐functionalised derivatives have not previously been utilised in this manner. Despite the elegance of this approach, to the authors' knowledge, there have been no previous examples reported of utilising macromolecular dopants as initiators for subsequent grafting of polymer brushes. © 2017 Society of Chemical Industry  相似文献   

20.
The preparation and property of antifouling poly(vinylidene fluoride) (PVDF) membrane tethered with polyampholyte hydrogel layers were described in this work. In fabricating these membranes, the [2‐(methacryloyloxy)ethyl] trimethylammonium chloride and 2‐acrylamide‐2‐methyl propane sulfonic acid monomers were grafted onto the alkali‐treated PVDF membrane to yield polyampholyte hydrogel layers via radical copolymerization with N,N′‐methylenebisacrylamide as crosslinking agent. The analyses of fourier transform infrared attenuated total reflection spectroscopy and X‐ray photoelectron spectroscopy confirm the covalent immobilization of polyampholyte hydrogel layer on PVDF membrane surface. The grafting density of polyampholyte hydrogel layer increases with the crosslinking agent growing. Especially for the membrane with a high grafting density, a hydrogel layer can be observed obviously, which results in the complete coverage of membrane pores. Because of the hydrophilic characteristic of grafted layer, the modified membranes show much lower protein adsorption than pristine PVDF membrane. Cycle filtration tests indicate that both the reversible and irreversible membrane fouling is alleviated after the incorporation of polyampholyte hydrogel layer into the PVDF membrane. This work provides an effective pathway of covalently tethering hydrogel onto the hydrophobic membrane surface to achieve fouling resistance. POLYM. ENG. SCI., 55:1367–1373, 2015. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号