首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The thin films of poly(methyl methacrylate) (PMMA), poly(styrene-co-acrylonitrile) (SAN) and their blends were prepared by means of spin-coating their corresponding solutions onto silicon wafers, followed by being annealed at different temperatures. The surface phase separations of PMMA/SAN blends were characterized by virtue of atomic force microscopy (AFM). By comparing the tapping mode AFM (TM-AFM) phase images of the pure components and their blends, surface phase separation mechanisms of the blends could be identified as the nucleation and growth mechanism or the spinodal decomposition mechanism. Therefore, the phase diagram of the PMMA/SAN system could be obtained by means of TM-AFM. Contact mode AFM was also used to study the surface morphologies of all the samples and the phase separations of the blends occurred by the spinodal decomposition mechanism could be ascertained. Moreover, X-ray photoelectron spectroscopy was used to characterize the chemical compositions on the surfaces of the samples and the miscibility principle of the PMMA/SAN system was discussed.  相似文献   

2.
The polymer nanocomposite (PNC) films consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrices dispersed with nanoparticles of amorphous silica (SiO2) have been prepared by solution-cast method followed by melt-press technique. Effects of SiO2 concentration (x?=?0, 1, 3 and 5 wt%) and PEO–PMMA blend compositional ratios (PEO:PMMA?=?75:25, 50:50, and 25:75 wt%) on the surface morphology, crystalline phase, polymer-polymer and polymer-nanoparticle interactions, melting phase transition temperature, dielectric permittivity, electrical conductivity, electric modulus and the impedance properties of the PNC films have been investigated. The crystalline phase of the PNC films decreases with the increase of PMMA contents which also vary anomalously with the increase of SiO2 concentration in the films. The melting phase transition temperature and polymer-nanoparticle interactions significantly change with the variation in the compositional ratio of the blend polymers in the PNC films. It is observed that the effect of SiO2 on the dielectric and electrical properties of these PNCs vary greatly with change in the compositional ratio of PEO and PMMA in the blends. The dielectric relaxation process of these films confirm that the polymers cooperative chain segmental dynamics becomes significantly slow when merely 1 wt% SiO2 nanoparticles are dispersed in the polymer blend matrix.  相似文献   

3.
Xue LiYanchun Han  Lijia An 《Polymer》2003,44(19):5833-5841
By addition of a small amount of poly(methyl methacrylate) (PMMA) into polystyrene (PS), we present a novel approach to inhibit the dewetting process of thin PS film through phase separation of the off-critical polymer mixture (PS/PMMA). Owing to the preferential segregation of PMMA to the solid SiOx substrate, a nanometer thick layer, rich in PMMA phase, is formed. It is this diffusive PMMA-rich phase layer near the substrate that alters the dewetting behavior of the PS film. The degree of inhibition of dewetting depends on the concentration and molecular weight of PMMA component. PMMA with low (15.9k) and intermediate (102.7k) molecular weight stabilizes the films more effectively than that with a higher molecular weight (387k).  相似文献   

4.
The selective staining by ruthenium tetroxide (RuO4) was used in combination with Atomic Force Microscopy and calcination to discriminate and assign microphases at the surfaces of films of complex polymer systems. This paper evaluates this technique on thin films of polystyrene-b-polylactide (PS-b-PLA) and polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) and demonstrates its efficiency on complex thin film of binary blend of PS-b-PMMA and PLA. This method overcomes difficulties in the interpretation of AFM images by assigning PS microphase. In addition we show that this methodology could yield nanostructured inorganic materials with tunable structures such as perforated layers or nanowires that could find potential applications in the fabrication of high specific surface area Ru oxide-based materials.  相似文献   

5.
Four immiscible blend systems, styrene-maleic anhydride/styrene-acrylonitrile (SMA/SAN). styrene-maleic anhydride/acrylonitrile-butadiene-styrene (SMA/ABS), poly(vinylidene fluoride)/SAN (PVF2/SAN), and PVF2/ABS, were investigated. The effect of adding up to about 10 wt% of a third polymer that is miscible with each blend component, poly(methylmethacrylate) (PMMA), was determined. In every case, the addition of PMMA led to the improvement of properties such as tensile strength, tensile elongation, and notched impact strength. Furthermore, the addition of PMMA resulted in finer, more uniform dispersions of the primary blend components. The experimental results are interpreted in terms of interfacial activity of the common phase component, PMMA.  相似文献   

6.
The effects of silica nanoparticles on the phase separation of poly (methyl methacrylate)/poly (styrene-co-acrylonitrile) (PMMA/SAN) blends are studied by the rheological method. The binodal temperatures of near-critical compositions were obtained by the gel-like behavior during spinodal decomposition, which is a character of polymer blends with co-continuous morphology. The shifted Cole–Cole plot method was introduced to determine the binodal temperatures of off-critical compositions based on the appearance of shoulder-like transition in the terminal regime of blends with droplet morphology. Such method is found also applicable in nanoparticle filled polymer blends. Moreover, a new method to determine the spinodal temperature from Fredrickson-Larson mean field theory was suggested, where the concentration fluctuation's contribution to the storage modulus is used instead of the whole dynamic moduli. This method was also successfully extended to nanoparticle filled polymer blend. The influences of the concentration and the average diameter of silica particles on the phase separation temperature were studied. It was found that the small amount of the silica nanoparticles in PMMA/SAN blends will significantly change the phase diagram, which is related to the selective location of silica in PMMA. The comparisons with thermodynamic theory of particle-filled polymer blends are also discussed.  相似文献   

7.
AC chip calorimetry is used to study the phase separation behavior of 100 nm thin poly(vinyl methyl ether)/poly(styrene) (PVME/PS) blend films. Using the on-chip heaters, very short (10 ms-10 s) temperature jumps into the temperature window of phase separation are applied, simulating laser heating induced patterning. These temperature pulses produce a measurable shift in the glass transition temperature, evidencing phase separation. The effect of pulse length and height on phase separation can be studied. The thus phase separated PVME/PS thin films remix rapidly, in contrast with measurements in bulk. AC chip calorimetry seems to be a more sensitive technique than atomic force microscopy to detect the early stages of phase separation in polymer blend thin films.  相似文献   

8.
Organically‐modified montmorillonite clay nanocomposites of poly(styrene‐co‐acrylonitrile) (SAN), poly(methyl methacrylate) (PMMA) and SAN/PMMA miscible blend are investigated. Structure characteristics at the nanoscale and microscale and thermal and tensile properties are studied as a function of polymer blend composition and filler loading fraction. Blend miscibility and Tg are unaffected by up to 10% by wt. organoclay. Thermal degradation stability increases with SAN content and exhibits an optimum value of clay loading. Stiffness shows significant improvement. Tensile strength and elongation‐at‐break suffer as a result of nanocomposite formation. Modulus shows a maximum enhancement of 57% (5 ± 0.06 GPa at 10 wt% filler, 20/80 SAN/PMMA) and varies linearly with clay fraction for all compositions of matrix phase. Predictions of Halpin–Tsai composite model are in excellent agreement with the experimental behavior over full range of polymer blend composition. Fundamental aspects of a polymer blend–clay nanocomposite are clarified, such as lack of additional synergy between clay platelets and matrix, and tensile ductility reduction, compared with polymer–clay system. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

9.
Two kinds of dewetting and their transition induced by composition fluctuation due to different composition in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on SiOx substrate at 145 °C have been studied by in-situ atomic force microscopy (AFM). The results showed that morphology and pathway of dewetting depended crucially on the composition. Possible reason is the variation in intensity of composition fluctuation resulted from the change of components in polymer blend. Based on the discussion of this fluctuation due to the composition gradient, parameter of Uq0/E, which describes the initial amplitude of the surface undulation and original thickness of film respectively, has been employed to distinguish the morphologies of spontaneous dewetting including bicontinuous structures and holes. Prior to the investigation of dewetting, it is confirmed that this blend is miscible at 145 °C using grazing incidence ultra small-angle X-ray scattering (GIUSAX).  相似文献   

10.
In polymer blends, the composition and microcrystalline structure of the blend near surfaces can be markedly different from the bulk properties. In this study, the enzymatic degradation of poly(ε‐caprolactone) (PCL) and its blends with poly(styrene‐co‐acrylonitrile) (SAN) was conducted in a phosphate buffer solution containing Pseudomonas lipase, and the degradation behavior was correlated with the surface properties and crystalline microstructure of the blends. The enzymatic degradation preferentially took place at the amorphous part of PCL film. The melt‐quenched PCL film with low crystallinity and small lamellar thickness showed a higher degradation rate compared with isothermally crystallized (at 36, 40, and 44°C) PCL films. Also, there was a vast difference in the enzymatic degradation behavior of pure PCL and PCL/SAN blends. The pure PCL showed 100% weight loss in a very short time (i.e., 72 h), whereas the PCL/SAN blend containing just 1% SAN showed ~50% weight loss and the degradation ceased, and the blend containing 40% SAN showed almost no weight loss. These results suggest that as degradation proceeds, the nondegradable SAN content increases at the surface of PCL/SAN films and prevents the lipase from attacking the biodegradable PCL chains. This phenomenon was observed even for a very high PCL content in the blend samples. In the blend with low PCL content, the inaccessibility of the amorphous interphase with high SAN content prevented the attack of lipase on the lamellae of PCL. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 868–879, 2002  相似文献   

11.
Li Yao  Zong Qi  Tang Liming 《Polymer》2005,46(25):12004-12009
The evolution of the phase separation was investigated for poly(methyl methacrylate)(PMMA)/hyperbranched poly(ester-amide)(HBP) blend films on glass substrate by means of phase contrast microscopy. The films with different component ratios show different phase separation processes and phase morphologies. At a film thickness of about several hundreds nanometers, a cylindrical dispersed phase was observed in the films with lower HBP content. The effects of the composition and sample thickness on the formation of the special morphology were also studied. It is found that the interaction between the substrate and HBP and the thickness of blend film are essential factors for the formation of the phase morphology and the appearance of the special cylindrical morphology depends on the component ratio and the film thickness. There is a critical film thickness, above which the special morphology could be observed. The critical thickness varies as the HBP weight percent changes. Our research provides a possible strategic way to obtain polymer films with special structure which are important for an increasing number of applications in wide fields.  相似文献   

12.
Li-Ting Lee  Toru Ube  Shinzaburo Ito 《Polymer》2011,52(25):5897-5903
The phase-separated structures in a thin-film conjugated polymer blend, poly(2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene)/poly(methyl methacrylate) (MDMO-PPV/PMMA) was studied by scanning near-field optical microscopy (SNOM), which can probe both of the surface topography and the chemical composition at high spatial resolution. In thin films of MDMO-PPV/PMMA, the PMMA-rich phase with less fluorescent emission appeared as a raised structure while the MDMO-PPV-rich phase with highly fluorescent emission was present as a collapsed phase with a low height. Such the vertical structure of the phase separation was dependent on the solvent quality for each component. On the other hand, the lateral structure was determined by the surface property of the substrate. As the degree of hydrophobic character of the substrate increased, the PMMA domains tended to form a continuous form to a separated spherical form. This evolution arise from a change in affinity between the substrate surface and PMMA, which the hydrophilic substrate has higher affinity to PMMA for maintaining the continuous structures and the hydrophobic substrate with lower affinity to PMMA can not hold the structures continuously.  相似文献   

13.
Substrate wetting of the component(s) of thin polymer blend films strongly dictates their phase evolution during thermal annealing. In the case of wetting by one component being preferential than the other, a continuous wetting layer at the substrate will form. Here, we report that the preferential wetting of PMMA within a PS/PMMA thin film can be prevented under normal pressure. Moreover, the external pressure drives the PMMA wetting layer at the substrate (or a PMMA cushion layer intentionally placed between the blend film and the superstrate) into the isolated PMMA domains within the blend film. This results in a film morphology normally observed on neutral surfaces, revealing that normal pressure can potentially be used to effectively control the blend film morphology by preventing the hydrodynamic wetting.  相似文献   

14.
The effects of compatibilizer on the morphological, thermal, mechanical, and rheological properties of poly(methyl methacrylate) (PMMA)/poly(N‐methyl methacrylimide) (PMMI) (70/30) blends were investigated. The compatibilizer used in this study was styrene–acrylonitrile–glycidyl methacrylate (SAN‐GMA) copolymer. Morphological characterization of the PMMA/PMMI (70/30) blend with SAN‐GMA showed a decrease in PMMI droplet size with an increase in SAN‐GMA. The glass‐transition temperature of the PMMA‐rich phase became higher when SAN‐GMA was added up to 5 parts per hundred resin by weight (phr). The flexural and tensile strengths of the PMMA/PMMI (70/30) blend increased with the addition of SAN‐GMA up to 5 phr. The complex viscosity of the PMMA/PMMI (70/30) blends increased when SAN‐GMA was added up to 5 phr, which implies an increase in compatibility between the PMMA and PMMI components. From the weighted relaxation spectrum, which was obtained from the storage modulus and loss modulus, the interfacial tension of the PMMA/PMMI (70/30) blend was calculated using the Palierne emulsion model and the Choi‐Schowalter model. The results of the morphological, thermal, mechanical, and rheological studies and the values of the interfacial tension of the PMMA/PMMI (70/30) blends suggest that the optimum compatibilizer concentration of SAN‐GMA is 5 phr. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43856.  相似文献   

15.
The glass-transition temperature (Tg) of polymer thin films can be strongly influenced by the combined effects of the supporting solid substrate and the free surface. The relative importance of these two effects, which often compete with each other, depends on the strength of the substrate–film interactions. Utilizing an atomistically informed coarse-grained model for poly(methyl methacrylate) (PMMA), here we uncover the relationship between the substrate–film interfacial energy and the spatial distribution of Tg across thin films. We find that above a critical interfacial energy, the linear dependence of film Tg on the interfacial energy breaks down and film Tg attains an asymptotic value. Analyses on the spatial variation of Tg across the thin film reveal that the short-range interface near the cohesive surface generates a long-range interphase that leads a spatially uniform appreciation of Tg throughout the film, unlike weakly cohesive surfaces that show sharp gradients along the depth of film. These findings explain recent experiments and reveal a versatile approach for tuning film Tg via engineered substrate-film interactions.  相似文献   

16.
Amorphous poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) blend films in extremely constrained states are meta-stable and phase separation of fractal-like branched patterns happens in them due to heterogeneously nucleated PEO crystallization by diffusion-limited aggregation. The crystalline branches are viewed flat-on with PEO chains oriented normal to the substrate surface, upon increasing PMMA content the branch width remains invariant but thickness increases. It is revealed that PMMA imposes different effects on PEO crystallization, i.e. the length and thickness of branches, depending on the film composition.  相似文献   

17.
The effects on molecular motion observed through early stage phase separation via spinodal decomposition, in melt mixed poly(styrene-co-acrylonitrile) (SAN) containing 25% by weight of acrylonitrile (AN) and poly(methyl methacrylate) (PMMA) (20/80 wt%) blends after adding two low molar mass liquid crystals (CBC33 and CBC53) and two lubricants (GMS and zinc stearate) were investigated using light scattering techniques. The samples were assessed in terms of the apparent diffusion coefficient (Dapp) obtained from observation of phase separation in the blends. The early stages of phase separation as observed by light scattering were dominated by diffusion processes and approximately conformed to the Cahn-Hilliard linearised theory. The major effect of liquid crystal (LC) was to increase the molecular mobility of the blends. The LC generally increased the Cahn-Hilliard apparent diffusion coefficient, Dapp, of the blend when added with concentrations as low as 0.2 wt%. GMS and zinc stearate can also improve the mobility of the blend but to a lesser extent and the effect does not increase at higher concentration. On the other hand, the more LC added, the higher the mobility. In all systems the second derivative of the Gibbs free energy becomes zero at the same temperature. The improved mobilities therefore seem to arise from changes in dynamics rather than thermodynamic effects.  相似文献   

18.
Matt J. Kipper  P. Thiyagarajan 《Polymer》2004,45(10):3329-3340
The phase behavior of a biocompatible binary polyanhydride blend system composed of poly[1,6-bis(p-carboxyphenoxy)hexane] (poly(CPH)) and poly(sebacic acid) (poly(SA)) is described. The phase behavior is determined from the CPH-SA segmental interaction parameter, χ, obtained from in situ small angle X-ray scattering (SAXS) experiments. The predicted phase diagram has an upper critical solution temperature (UCST) with a critical point of 114 °C. The phase diagram is validated by optical microscopy (cloud point determination) of blend films. However, the full range of blend compositions is not accessible via cloud point measurements, because the melting point of poly(CPH) is above the critical point. Additionally, the poly(CPH) crystallinity interferes with cloud point determination because the length scale of the amorphous phase separation and that of the crystallinity are both near the limit of resolution of the optical microscope. The poly(CPH)-rich region of the phase diagram was investigated by ex situ atomic force microscopy on thin blend films. Finally, in order to validate the use of molecular simulations to study energetic and structural properties of this system, χ is also computed from molecular dynamics both above and below the critical point. Excellent agreement is obtained for all three experimental methods and the computational technique. The results are compared to a simple group contribution method for computing the solubility parameters of the polymers. This technique fails to accurately predict the phase diagram.  相似文献   

19.
Miao Du 《Polymer》2004,45(19):6725-6730
The dynamic rheological properties and morphology in the vicinity of phase-separated region for poly(methyl methacrylate) (PMMA)/poly(styrene-co-acrylonitrile) (SAN) blends with lower critical solution temperature (LCST) behavior were investigated. When temperature was above the phase separation temperature, i.e. cloud point (Tc) for some PMMA/SAN blends, the slope of plotting versus decreased at low frequencies (terminal region), indicating the appearance of phase-separation and existence of heterogeneous structure. We employed a model dealing with complex modulus of the two phases mixture proposed by Kopnistos et al. for describing the dynamic rheological behaviors of PMMA/SAN blends, according to the assumption that the interfacial tension between the matrix and the dispersed phase was independent of local shear and variation of interfacial area, and that the dispersed spherical droplets were nearly monodispersed. It is found that the predicted results were in qualitative agreement with the experimental data of this study. The ratio of interfacial tension α to the size of dispersed phase R, α/R, was obtained for 80/20 and 60/40 PMMA/SAN blends, and the two different morphology were also observed.  相似文献   

20.
We employed thin film blends of diblock copolymers with functional homopolymers as a simple strategy to incorporate organic functional materials into nanodomains of diblock copolymers without serious synthesis. A blend pair of polystyrene-poly(methyl methacrylate) (PS-PMMA) diblock copolymers and poly(vinylidene fluoride) (PVDF) was selected as a model demonstration because PVDF is a well-known ferroelectric polymer and completely miscible with amorphous PMMA. Thin films of symmetric PS-PMMA copolymers provided the nanometer-sized PMMA lamellae, macroscopically parallel to the substrate, in which PVDF chains were dissolved. Thus, amorphous PVDF chains were effectively confined in the PMMA lamellae of thin film blends. The location of PVDF chains in the PMMA lamellae was investigated by the dependence of the lamellar period on the volume fraction of PVDF, from which we found that PVDF chains were localized in the middle of the PMMA lamellae. After the crystallization of PVDF, however, some of PVDF migrated to the surface of the film and formed small crystallites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号