首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The boundary effect and the presence of a nearby entity on the drag of a rigid entity is investigated by considering the movement of two identical, rigid, coaxial spheres normal to a plane in both a Newtonian and a Carreau fluid at a low to medium large Reynolds number. The parameters key to the phenomenon under consideration, including the nature of the fluid, the separation distance between two spheres, the distance between the near sphere and the plane, and the Reynolds number, on the drag coefficient are discussed. We show that the influence of a boundary on the drag coefficient is more important than that of the nature of a fluid and that of the separation distance between two spheres. The variation of the drag coefficient as a function of Reynolds number for a Carreau fluid is similar to that for a Newtonian fluid. Due to the shear-thinning nature of the former the drag coefficient in the former is smaller than that in the latter. The influence of the index parameter of a Carreau fluid becomes appreciable only if the Carreau number is sufficiently large. Correlations between the drag coefficient and the key parameters of a system are developed for the case when the Reynolds number is smaller than l.  相似文献   

2.
Drag on a sphere in a spherical dispersion containing Carreau fluid   总被引:1,自引:0,他引:1  
The drag on a rigid sphere in a spherical dispersion containing Carreau fluid is investigated theoretically based on a free surface cell model for Reynolds number in the range [0.1,100], Carreau number in the range [0,10], the power-law index in the range [0.3,1], and the void fraction in the range [0.271,0.999]. The influences of the particle concentration, the nature of the Carreau fluid, and Reynolds number, on the drag coefficient are examined. We show that the drag coefficient declines with the decreasing particle concentration, and the reversal of the flow field in the rear region of a sphere is enhanced by the shear-thinning nature of the fluid. An empirical relation, which correlates the drag coefficient with the void fraction (= 1 − particle concentration), the nature of the Carreau fluid, and Reynolds number, is proposed.  相似文献   

3.
The drag on a spherical particle is studied for two limiting cases, namely for the rigid sphere and for the bubble. An approximate solution is found for creeping flow around a particle suspended in a shear-thinning fluid. The three parameter Carreau model is used to represent the suspending liquid. The drag force on the particle for both cases is calculated by a perturbation method around the Newtonian solution in the limit of small Carreau number. The resulting expressions are found to be dependent on the Carreau number and on the power-law index.  相似文献   

4.
An approximate solution for the motion of an assemblage of solid spheres moving in a power-law fluid in the high Reynolds number region is obtained using a combination of Happel's free-surface cell model and the boundary layer theory. It is theoretically predicted that the drag coefficient will decrease with the increase of the shear-thinning anomaly. The results of the present analysis are in reasonably good agreement with the available experimental data for fixed and fluidized beds. The influence of the non-Newtonian behavior on the mass transfer rate from an assemblage of solid spheres is also discussed.  相似文献   

5.
An approximate solution for the motion of an assemblage of solid spheres moving in a power-law fluid in the high Reynolds number region is obtained using a combination of Happel's free-surface cell model and the boundary layer theory. It is theoretically predicted that the drag coefficient will decrease with the increase of the shear-thinning anomaly. The results of the present analysis are in reasonably good agreement with the available experimental data for fixed and fluidized beds. The influence of the non-Newtonian behavior on the mass transfer rate from an assemblage of solid spheres is also discussed.  相似文献   

6.
The momentum transfer characteristics of the power-law fluid flow past an unconfined elliptic cylinder is investigated numerically by solving continuity and momentum equations using FLUENT (version 6.2) in the two-dimensional steady cross-flow regime. The influence of the power-law index (0.2?n?1.8), Reynolds number (0.01?Re?40) and the aspect ratio of the elliptic cylinder (0.2?E?5) on the local and global flow characteristics has been studied. In addition, flow patterns showing streamline and vorticity profiles, and the pressure distribution on the surface of the cylinder have also been presented to provide further physical insights into the detailed flow kinematics. For shear-thinning (n<1) behaviour and the aspect ratio E>1, flow separation is somewhat delayed and the resulting wake is also shorter; on the other hand, for shear-thickening (n>1) fluid behaviour and for E<1, the opposite behaviour is obtained. The pressure coefficient and drag coefficient show a complex dependence on the Reynolds number and power-law index. The decrease in the degree of shear-thinning behaviour increases the drag coefficient, especially at low Reynolds numbers. While the aspect ratio of the cylinder exerts significant influence on the detailed flow characteristics, the total drag coefficient is only weakly dependent on the aspect ratio in shear-thickening fluids. The effect of the flow behaviour index, however, diminishes gradually with the increasing Reynolds number. The numerical results have also been presented in terms of closure relations for easy use in a new application.  相似文献   

7.
Power-law shear-thinning fluid flow over a heated square bluff body is numerically investigated under aiding buoyancy mixed convection at low Reynolds numbers. Semi-explicit finite volume code is developed to solve the governing equations along with the appropriate boundary conditions. Both aiding buoyancy and shear-thinning natures are found to augment the heat transfer rate from the surface of the long square bar. In aiding buoyancy, the total drag coefficient is found to be more for the square cylinder than that of the circular cylinder, whereas the average cylinder Nusselt number for the square cylinder is found to be lower than the circular one on equal side/diameter basis. Maximum augmentation in heat transfer is found to be approximately 20% with respect to forced convection. Finally, a heat transfer correlation is established by using the Colburn heat transfer factor.  相似文献   

8.
Extensive experimental results on the free fall of a range of non-spherical particles such as square bars, cylinders, spheres and crushed rock chips in Newtonian, inelastic, viscoelastic and Boger fluids are presented. It is demonstrated that the use of a volume equivalent sphere diameter in addition to a shape factor provides an adequate approximation for the non-sphericity of particles used in this study. The applicability of two rheological models, namely, the power-law and the Carreau viscosity model has been examined in representing the drag coefficient results. Appropriate predictive expressions of the drag coefficient as a function of the particle Reynolds number and the Deborah number, encompassing wide ranges of rheological and kinematic conditions, are presented.  相似文献   

9.
This paper numerically evaluates the hydrodynamic drag force exerted on two highly porous spheres moving steadily along their centerline (sphere #1 and sphere #2) through a quiescent Newtonian fluid over a Reynolds number ranging from 0.1 to 40. At creeping flow limit, the drag forces exerted on both spheres were identical. At higher Reynolds numbers the drag force on sphere #1 was higher than sphere #2, revealing the shading effects produced by sphere #1 on sphere #2. At dimensionless diameter (β, =df/2k0.5, df and k are floc diameter and interior permeability, respectively) >20, the spheres can be regarded nonporous. At β<20, the drag forces dropped. At β<2, the drag forces approached “no-spheres” limit. An increased size ratio of two spheres (df1/df2) would increase the drag force on sphere #1 and reduce that on sphere #2. At increasing β for both spheres, the drag force on sphere #2 was increased because of the more difficult advective flow through its interior, and at the same time the drag was reduced owing to the stronger wake flow produced by the denser sphere #1. The competition between these two effects leads to complicated dependence of drag force on sphere #2 on β value. These effects were minimal when β became low. Two identical spheres could move steadily along their centerline. At higher Reynolds number, the two spheres would move closer because of the incorporation of inertia force. For spheres of different diameters, the sphere # 2 would move faster than sphere #1 regardless of their size ratio and β value. This occurrence yielded efficient coagulation when two porous spheres were moving in-line.  相似文献   

10.
The equations of motion of an accelerating sphere falling through non-Newtonian fluids with power law index n in the range 0.2 ≤ n ≤ 1.8 were integrated numerically using the assumption that the drag on the sphere was a function of both power law index and terminal Reynolds number, Ret For 10?2Ret ≤ 103 both dimensionless time and distance travelled by the sphere under transient conditions showed a much stronger dependence on the flow behaviour index, n, for shear-thinning than for shear-thickening fluids. The form of this dependence is investigated here. Furthermore, results in four typical shear-thinning fluids suggested a strong correlation between the distance and time travelled by the sphere under transient conditions and the value of the fluid consistency index. The analysis reported herein is, however, restricted to dense spheres falling in less dense fluids, when additional effects arising from the Basset forces can be neelected.  相似文献   

11.
Flow past an isolated permeable sphere has been studied. The complete Navier-Stokes equation governs the fluid motion outside the sphere, while Brinkman's extension of Darcy's Law is assumed to hold within the porous sphere. The Navier-Stokes equation is solved using a finite difference scheme. The flow within the porous sphere is solved in two different ways, each being efficient over a particular range of Reynolds number. Drag Coefficients are presented for dimensionless permeability, β, of 5, 10, 15, and 30 and for Reynolds numbers up to 50. The computed drag coefficients are within 10% of the experimental values observed by Masliyah and Polikar for 15 < β > 33, the range covered in their work. Separation was observed only for β > 10. The onset of separation is delayed considerably in porous spheres.  相似文献   

12.
Lift and drag forces on a sphere attached to a planar wall, over which a laminar flat plat boundary layer flows, are examined numerically in this study. Particle Reynolds number ranged from 0.1–250, which represents steady, laminar flow about the sphere, and the plate Reynolds number was held constant at 32 400. A finite-volume computational fluid dynamics program was utilised. Simulation results were validated against analytical results for drag and lift in creeping flow and against experimental results available in the literature for lift at higher particle Reynolds number. The model results were curve-fitted and interpolating drag and lift coefficient functions are reported. The lift and drag results are shown to be weakly dependent upon plate Reynolds number. The resulting correlations are expected to be useful in the development of particle impending motion and aerosol entrainment predictions of particles adhering to planar walls.  相似文献   

13.
Wall effects on the flow of incompressible non-Newtonian power-law fluids across an equilateral triangular cylinder confined in a horizontal plane channel have been investigated for the range of conditions: Reynolds number, Re=1–40, power-law index, n=0.4–1.8 (covering shear-thinning, Newtonian and shear-thickening behaviors) and blockage ratio=0.125–0.5. Extensive numerical results on flow pattern, wake/recirculation length, individual and overall drag coefficients, variation of pressure coefficient on the surface of the triangular cylinder and so forth are reported to elucidate the combined effect of power-law index, blockage ratio and Reynolds number. The size of vortices decreases with an increase in the value of the blockage ratio and/or power-law index. For a fixed value of the Reynolds number, individual and overall drags decrease with decrease in power-law index and/or blockage ratio in steady confined flow regime. Simple correlations of wake length and drag are also obtained for the range of settings considered.  相似文献   

14.
Experimental data are presented for two equal-sized spheres falling along the axis of a cylinder. The two spheres settle with the same velocity as that of a single falling sphere as long as their separation distance is larger than a critical value. When the distance is smaller than the critical value, the two spheres fall faster than a single sphere. The drag on the two spheres is less affected when two spheres fall in a cylinder in comparison to the situation when two spheres fall in an unbounded medium. The data are correlated and shown to agree with numerical calculations.  相似文献   

15.
The flow pattern and hydrodynamics of a heterogeneous permeable agglomerate in a uniform upward flow at intermediate Reynolds numbers(1–40) are analyzed from three-dimensional(3 D) computational fluid dynamics simulations. Different from the homogeneous or stepwise-varying permeability models used in previous papers, a continuously radially varying permeability model is used in the present study. The effects of two dimensionless parameters, the Reynolds number and the permeability ratio, on the flow field and the hydrodynamics were investigated in detail. The results reveal that unlike the solid sphere, a small recirculating wake initially forms inside the agglomerate. The critical Reynolds number for the formation of the recirculating wake is lower than that of the solid sphere and it decreases with the increase of permeability ratio. A correlation of drag coefficient as a function of the Reynolds number and permeability ratio is proposed. Comparisons of drag coefficients obtained by different permeability models show that at intermediate Reynolds numbers(1–40),the effect of radially varying permeability on the drag coefficient must be considered.  相似文献   

16.
The conditions for the formation of a wake and for the onset of wake instability for the flow of power-law fluids over an unconfined circular cylinder are investigated numerically by solving the continuity and momentum equations using FLUENT (version 6.2). The effect of power-law index on the critical Reynolds numbers, Strouhal number and drag coefficient has been presented over a wide range of power-law index (0.3?n?1.8) thereby establishing the limits of the flow without separation and the steady symmetric flow regimes, respectively. While both the shear-thinning (n<1) and the shear-thickening (n>1) seem to lower the value of the critical Reynolds number denoting the onset of wake instability as compared to that for Newtonian fluids, the effect is seen to be more prominent for shear-thickening fluids than that for shear-thinning fluids. The corresponding values of the critical Strouhal number (Stc) and drag coefficient have also been presented for the critical values of the Reynolds number. Included here are also a series of streamline plots showing the onset of asymmetry and of the time-dependent flow regime.  相似文献   

17.
The nature and effects of contacts between suspended particles were studied through a process in which a heavy sphere falls past a light sphere in a viscous fluid at low Reynolds number. Teflon and nylon spheres were used for the heavy and light spheres, respectively, with natural surface roughness and with the nylon sphere artificially roughened. Because of the existence of microscopic roughness on the sphere surfaces, the particles are able to make physical contact, breaking the symmetry of the trajectory predicted by hydrodynamic theory for smooth spheres. The experimental results are compared with numerical results calculated according to the theory of Davis (Phys. Fluids A 4 (1992) 2607), with a particular focus on the rotational velocities of the spheres. The numerical results from the roll/slip model provide the best fit of the experimental data. Instead of locking together like a rigid body and rotating together, two spheres initially roll without slipping and then roll with slipping after the maximum friction force is reached.  相似文献   

18.
In this study, the effect of agglomerate sizes for a fractal dimension (Df) of 2.5 on the hydrodynamics at intermediate Reynolds numbers (Re) of 1–120 was assessed. The results show that a core behaves like a solid sphere that exists in the central region inside the agglomerate. In addition, increasing the agglomerate diameter represents adding an extra permeable layer outside the agglomerate. For a larger Re or a smaller agglomerate diameter, the fluid can enter and penetrate through the agglomerate more easily, and the hydrodynamic characteristics of agglomerates deviate more from those of solid spheres. The effect of diameters on the velocity and pressure profiles becomes less significant with the increase in the diameter. Based on the simulated results, the drag ratio has an approximately linear relationship with Re, and its intercept has an exponential relationship with the dimensionless agglomerate diameter. Compared with homogeneous porous spheres, the drag ratio of the agglomerate is different. The effect of diameters on the drag ratio decreases as the diameter increases. It should be noted that the effect of radially varying permeability on inhomogeneous agglomerates should not be ignored and that the effect weakens as Re increases.  相似文献   

19.
Electroviscous effects in steady, pressure-driven flow of a Carreau shear-thinning liquid in a cylindrical microfluidic 4:1:4 contraction–expansion at low Reynolds number are investigated numerically by solving the equations governing the flow, the electric field, and ion transport, using a finite volume method. The channel wall is considered to have a uniform surface charge density and the liquid is assumed to be a symmetric 1:1 electrolyte solution. Predictions are presented for a range of values of the shear-thinning parameters in the Carreau model for various surface charge densities and Debye lengths. The apparent/physical viscosity ratio is shown to increase as the degree of shear-thinning increases. Thus the electroviscous effect is stronger in shear-thinning liquids than it is when the liquid is Newtonian, a result previously obtained for uniform pipe flow of power-law liquids. The trend holds true regardless of the choice of surface charge density or Debye length, although the magnitude of the trend decreases as the surface charge density and/or the Debye length is reduced. Comparison between uniform pipe flow of a Carreau liquid and the corresponding power-law liquid that approximates it at large shear rates shows that the apparent/physical viscosity ratios for the two models are almost identical. A previous prediction that a near-wall region of reduced velocity can occur for pipe flow of a shear-thinning power-law liquid when EDLs are overlapping and surface charge density is elevated is confirmed for a Carreau liquid.  相似文献   

20.
The effect of blockage ratio on the steady flow and heat transfer characteristics of incompressible fluid over a sphere and an in-line array of three spheres placed at the axis of a tube has been investigated numerically. The Navier-Stokes and thermal energy equations have been solved numerically using FLUENT for the following ranges of parameters: for a single sphere, 2 ≤ β ≤ 10; 1 ≤ Re ≤ 100; for the three-sphere system, for two values of sphere-to-sphere distance, namely s = 2 and 4. All computations were carried out for two values of the Prandtl number, i.e., 0.74 and 7, corresponding to the flow of air and water respectively. Extensive results on streamline patterns, wake characteristics (angle of separation and recirculation length), drag coefficient and Nusselt number are presented to elucidate the interplay between the blockage and the Reynolds number and their influence on drag and Nusselt number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号