共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and characterization of partly fluorinated poly(phthalazinone ether)s crosslinked by allyl group for passive optical waveguides 总被引:2,自引:0,他引:2
It is necessary to introduce cross-linkable groups onto polymer chains as the processability and thermal stability of the polymers for passive waveguide device applications are very dependent on their cross-linking capabilities. Herein a series of novel cross-linkable allyl-containing fluorinated poly(phthalazinone ether)s (Allyl-FPPEs) have been prepared by a modified polycondensation of 4-(4-hydroxylphenyl)(2H)-phthalazin-1-one (DHPZ), decafluorobiphenyl (DFBP), 4,4′-(hexafluoroisopropylidene)diphenol (6F-BPA), and 3,3′-diallyl-4,4′-dihydroxybiphenyl (DA-DHBP) for optical waveguide applications. The obtained random polymers were characterized by FT-IR, NMR and GPC. The resulting polymers having good solubility in polar organic solvents at room temperature, can be easily spin-coated into thin films with attracting optical quality, good thermal stabilities (the temperatures of 1% mass-loss after curing: 455-503 °C), and high glass transition temperatures (Tgs: 167-251 °C) which could further increase by about 20 °C after thermal cross-linking. The crosslinked polymer films exhibit good optical properties. By adjusting the feed ratio of the reactants, the refractive indices of TE and TM modes (at 1550 nm) could be well controlled in the range of 1.4998-1.5618 and 1.4954-1.5520, respectively. The optical losses of the crosslinked polymers possess rather low values, less than 0.3 dB/cm at 1550 nm. 相似文献
2.
Synthesis, characterization and optical properties of cross-linkable poly(phthalazinone ether ketone sulfone) 总被引:1,自引:0,他引:1
Cross-linkable poly(phthalazinone ether ketone sulfone) bearing tetrafluorostyrene groups (PPEKS-FSt) has been prepared by copolycondensation reaction for optical waveguide applications. The resulting amorphous polymer exhibits good solubility in some common polar organic solvents (e.g., N,N′-dimethylacetamide, N-methyl-2-pyrrolidinone, chloroform) at room temperature, and can be easily spin-coated into thin films with good optical quality. The glass transition temperature (Tg) and the temperature of 1% weight loss (1% Td) are 261 °C and 494 °C, respectively, which could be further increased by 31 °C and 14 °C upon thermal cross-linking. The cross-linked polymer thin films exhibit high refractive index (∼1.65, TE mode), high thermo-optic coefficient value (dn/dT) (−1.455 × 10−4/°C, TE mode), low optical loss (less than 0.24 dB/cm at 1310 nm) and relatively low birefringence (∼0.007). 相似文献
3.
Three series of poly(aryl ether sulfone)s (PAESs) containing the phthalazinone moiety in the polymer backbone were synthesized by solution polycondensation of bis(4-chlorophenyl) sulfone with three commercial bisphenols and 4-(4-hydroxyphenyl)-2,3-phthalazin-1-one. Bisphenol-A, hydroquinone, and bis(4-hydroxyphenyl) sulfone, or bisphenol-S, were selected as the commercial bisphenols for copolymerization. The synthesized polymers exhibited very high glass transition temperatures and excellent thermooxidative properties. They also showed superior mechanical properties and fair rheological properties. The introduction of relatively flexible moieties, such as benzene rings, onto the poly(phthalazinone ether sulfone) (PPES) chain led to a decrease in glass transition temperature with respect to the phthalazinone homopolymer. However, the processability of PPES was improved dramatically by the addition of these commercial bisphenols. The properties of synthesized PAESs can be tailored by changing the molar ratios of bisphenols to phthalazinone monomer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:137–143, 1998 相似文献
4.
A novel poly(phthalazinone ether ketone ketone) was prepared via the nucleophilic substitution polycondensation of bis-1,4-(4-chlorobenzoyl)benzene and 4-(4-hydroxyphenyl)-2,3-phthalazin-1-one. The synthesized polymer exhibited high glass-transition temperature, excellent thermooxidative properties, and fair rheological properties. The polymer was soluble in some polar solvents. Electronic friction and membrane properties are also discussed. The results indicate that the polymer falls in the class of high temperature resistance engineering plastics. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 823–826, 2001 相似文献
5.
A novel phenylethynyl-contained bisphenol monomer, (2,5-dihydroxyphenyl)(4-(2-phenylethynyl)phenyl)methanone (PEBP), has been synthesized and characterized. The resultant monomer was copolymerized with hydroquinone and 4,4′-difluorobenzophenone by means of an aromatic nucleophilic substitution reaction to provide a series of crosslinkable poly(aryl ether ketone)s containing pendant phenylethynyl moieties (PE-PAEKs). The solubility of PE-PAEKs tended to be improved with the increase in PEBP content. Wide-angle X-ray diffraction (WAXD) results showed that introduction of bulky pendant groups into molecular chains led to decrease in crystallinity. PE-PAEKs were successfully cured upon heating. Dynamic mechanical analysis (DMA) results indicated that the glass-transition temperature (Tg) of the cured PE-PAEKs was increased. Thermogravimetric analysis (TGA) results implied that the thermal stability of the cured PE-PAEKs was excellent. 相似文献
6.
Synthesis and characterization of soluble copoly(arylene ether sulfone phenyl-s-triazine)s containing phthalazinone moieties in the main chain 总被引:1,自引:0,他引:1
A series of new poly(arylene ether sulfone phenyl-s-triazine) copolymers containing phthalazinone moieties in the main chain (PPESPs) were prepared by a direct solution polycondensation of 4-(4-hydroxylphenyl)(2H)-phthalazin-1-one (HPPZ) with 2-phenyl-4,6-bi(4-fluorophenyl)-1,3,5-triazine (BFPT) and 4,4′-dichlorodiphenyl sulfone (DCS). Model reactions monitored by HPLC indicated that BFPT had slightly higher reactivity than DCS in nucleophilic displacement reactions. The obtained random copolymers were characterized by FTIR, NMR, elemental analysis and GPC. The presence of sulfone and phthalazinone in the polymer chain results in an improvement in the solubility of poly(arylene ether phenyl-s-triazine)s in common organic solvents, such as N-methylpyrrolidone, N,N-dimethyl acetamide (DMAc), chloroform, sulfolane and pyridine. Thermal analysis reveal that the copolymers exhibit high glass transition temperatures (Tgs) ranging from 271–300 °C, and excellent thermal stability associated with decomposition temperatures for 5% mass-loss exceeding 503 °C. All copolymers are amorphous except PPESP28 as evidenced by WAXD. Their Tgs and solubility increase with an increase in sulfone content in the polymer backbone, while the crystallinity and overall thermal stability appear to decrease. This kind of phthalazinone-based copoly(arylene ether sulfone phenyl-s-triazine)s may be considered a good candidate for using as high-performance structural materials. 相似文献
7.
A novel series of phthalazinone-based poly(arylene ether nitrile)s bearing terminal cyano groups via N-C linkages (PPEN-DCs) were synthesized by a simple solution polycondensation of 4-(4-hydroxylphenyl)(2H)-phthalazin-1-one (HPPZ) with calculated 2,6-difluorobenzonitrile (DFBN), followed by the termination of 4-chlorobenzonitrile (CBN). The Mns of oligomeric PPEN-DCs, which are in the range of 1600-6200, can be well-controlled by adjusting reactant ratio. The incorporation of phthalazinone into the polymer chain results in an improvement in the solubility and glass transition temperatures (Tgs). The amorphous PPEN-DCs were thermally crosslinked to afford insoluble products in the presence of terephthalonitrile and zinc chloride. The pendant cyano groups in the polymer chain hardly undergo any crosslinking or cyclization, while the terminal cyano groups with nitrogen-bridged phthalazinone in the para-substitution are much more reactive in s-triazine forming reaction and effectively promote certain crosslinking under normal pressure. Tgs of the oligomers, which range from 245 to 269 °C, could be further increased at least by 94 °C upon thermal curing. The crosslinked samples exhibit excellent thermal stability and absorb less than 2.7 wt% water after exposure to an aqueous environment for extended periods. This kind of cyano-terminated poly(arylene ether nitrile)s may be a good candidate as matrix resins for high-performance polymeric materials. 相似文献
8.
As a category of high performance polymers having good solubility and distinguished thermal properties, poly(phthalazinone ether)s received much attention for their applications in engineering plastics and membrane materials. 2-(2-Fluoro-4-hydroxybenzoyl)-benzoic acid (FHBBA) synthesized from 3-fluorophenol and phthalic anhydride reacted with hydrazine hydrate to form 4-(2-fluoro-4-hydroxyphenyl)-phthlazin-1(2H)-one (FDHPZ). Four polymers were prepared from polycondensation reactions of FDHPZ with 4,4′-difluorobenzophenone, bis(4-chlorophenyl) sulfone, 1,4-bis(4-fluorobenzoyl)-benzene and perfluorobiphenyl, respectively. All polymers show good solubility in common aprotic solvents and have excellent thermal properties investigated by DSC and TGA. FTIR and NMR spectra of FDHPZ, FHBBA, and polymers from FDHPZ were studied. Refractive indices (nTE) of films on silicon substrates were measured with a Prism Coupler. These polymers have potentials as materials for optical waveguides. 相似文献
9.
A series of comb-type amphiphilic copolymers (PES-g-PEO) with a stiff poly(aryl ether sulfone) backbone and flexible PEO side chains was synthesized via a “grafting onto” technique. By controlling the monomer feed ratios, high molecular weight copolymers with a range of PEO side chain content were prepared and used to form tough and flexible membranes. The PES-g-PEO membranes displayed high thermal stability (Td > 230 °C) and good mechanical properties. The water contact angles of the PES-g-PEO membranes ranged from 60.5° to 66.7°, 20° lower than those of poly(aryl ether sulfone) membranes (82-86°), indicating that the PEO side chains improved the hydrophilicity of the membranes. Wide-angle X-ray diffraction results indicated that the PES-g-PEO membranes possessed an amorphous structure, that is, crystallization of the PEO side chains did not occur. The Li-ion conductivity reached 2.26 × 10−4 S/cm at room temperature, much higher than that of the pure PEO-based system (10−6 S/cm), due to the presence of the amorphous PEO side chains between the PES backbones, which provided an effective Li-ion transport pathway. 相似文献
10.
11.
通过一种反应条件较为温和的反应新工艺,合成联苯二甲酰氯,即4,4’-二氯甲酰基联苯(BC IBP)。然后,在无水A lC l3及N-甲基吡咯烷酮(NMP)/1,2-二氯乙烷(DCE)复合溶剂的存在下,将2,6-二苯氧基苯甲腈(DPOBN)与BC IBP进行低温缩聚反应,合成了一类新型含氰侧基联苯型聚芳醚醚酮酮。用IR,DSC,TG,WAXD及元素分析等方法对其结构和性能进行了表征。结果表明,所合成的聚合物具有预期结构且为非晶态聚合物;其玻璃化转变温度(Tg)为211℃,在氮气气氛中及在空气气氛中的热分解5%的温度(Td)分别为523℃及498℃,说明其具有突出的耐高温性能;聚合物除了能在浓H2SO4,CF3COOH/CHC l3等强质子性溶剂当中溶解外,对其他的溶剂均不溶解,说明聚合物具有优异的耐化学腐蚀性能。 相似文献
12.
Well-defined multi-stimuli responsive fluorinated graft poly(ether amine)s (fgPEAs) were synthesized through nucleophilic substitution/ring-opening reaction of commercial poly(propylene glycol) diglycidyl ether and Jeffamine L100, followed by functionalization of hydroxyl groups in backbone by fluorinated alkyl carboxylic acid. fgPEAs are comprised of hydrophilic short poly(ethylene oxide) (PEO) and hydrophobic fluorinated alkyl chains, which are grafted on poly(propylene oxide) (PPO) backbone alternately to form well-defined structure. In aqueous solution, fgPEA11 and fgPEA12 self-assembled into multi-dispersed micelles, while fgPEA13 formed the uniform-sized micro-micelles with diameter of about 200 nm. These obtained micelles from fgPEAs were multi-responsive to temperature, pH and ionic strength with tunable cloud point (CP). It’s notable that CP of fgPEAs aqueous solution increased with the increasing amount of graft fluorinated alkyl chains. 相似文献
13.
Pentafluorophenyl sulfone was prepared by oxidation of pentafluorophenyl sulfide. Ethynyl terminated fluorinated poly(arylene ether sulfone) (EFPAESO) was synthesized via nucleophilic aromatic substitution from 4,4′-(hexafluoroisopropylidene) diphenol or 4,4′-(trifluoromethylphenylisopropylidene) diphenol with an excess of pentafluorophenyl sulfone, followed by reaction with 3-ethylnylphenol. The molecular weights (Mns) of the polymers determined by GPC with polystyrene standard were in the range of 6,400-17,200 and polydispersities (Mw/Mns) were in the range of 2.25-3.19. This EFPAESO showed very high thermal stability up to 479 °C for 5% weight loss in TGA in air. Tg of the polymer was changed from 148 to 196 °C after curing. The cured films showed good chemical resistance and high thermal-stability. At 1550 nm wavelength, the refractive indices of the copolymer films were in the range of 1.5037-1.5504 and birefringences were in the range of 0.0021-0.0025. The optical loss for EFPAESO was less than 0.37 dB/cm at 1550 nm wavelength. 相似文献
14.
以4,4′-二苯氧基二苯砜(DPODPS)、对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)为单体,无水AlCl3/二氯乙烷(DCE)/N,N-甲基甲酰胺(DMF)为催化溶剂体系,通过低温溶液共缩聚反应,合成系列聚芳醚砜醚酮酮(PESEKKs),用IR、DSC、WAXD、TG等技术对聚合物进行了结构和性能的表征,研究结果表明,随着高分子主链中间位苯基结构单元的增加,对共聚玻璃化转变温度(Tg)和热分解温度(Td)影响不大,熔融温度(Tm)和结晶则逐渐降低,但仍保持良好的耐热性,溶解性等到很大改善。 相似文献
15.
New monomers, 4,4′-bis(4-phenoxybenzoyl)diphenyl (BPOBDP) and N,N′-bis(4-phenoxybenzoyl)-p-phenylenediamine (BPBPPD), were conveniently synthesized via simple synthetic procedures from readily available materials. A series of novel poly(aryl ether ketone)s containing both diphenyl moiety and amide linkages in the main chains were prepared by electrophilic Friedel-Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of BPOBDP and BPBPPD, over a wide range of BPOBDP/BPBPPD molar ratios, in the presence of anhydrous AlCl3 and N-methylpyrrolidone (NMP) in 1,2-dichloroethane (DCE). All the polymers are semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of the diphenyl moiety and amide linkages in the main chains. The polymers with 40-60 mol% BPBPPD had not only high Tgs of 183-189 °C, but also moderate Tms of 314-328 °C, which are very suitable for the melt processing. These polymers had tensile strengths of 107.4-111.5 MPa, Young's moduli of 2.20-2.45 GPa, and elongations at break of 11.3-13.5% and exhibited high thermal stability and good resistance to organic solvents. 相似文献
16.
A blue-fluorescence 2,4,6-tris(4-fluorophenyl)-1,3,5-triazine (TFPT) monomer was synthesized with high yield and high purity under mild reaction conditions. The TFPT, which had three active fluoric groups, was facilely incorporated into stable cross-linked fluorescent polymeric nanoparticles (FCPNs) via precipitation polymerization with 6-(4-hydroxyphenyl)pyridazin-3(2H)-one (HPZ). The FCPNs were highly dispersible in water and showed uniform size, intense blue fluorescence, and excellent biocompatibility, making them promising for live cell imaging label applications. This work has the potential to promote the exploitation of novel s-triazine monomers, and to provide a new view of functional crossing-linked polymers based on such monomers. 相似文献
17.
Sulfonated poly(aryl ether ketone)s (SPAEK) copolymers were synthesized by aromatic nucleophilic polycondensation from 4,4′-(hexafluoroisopropylidene)-diphenol, 1,3-bis(4-fluorobenzoyl)benzene and di-sulfonated difluorobenzophenone. The copolymers exhibited good thermal and oxidative stability. The SPAEK membranes with sulfonic acid content (SC) ranging from 0.6 to 1.16 maintained adequate mechanical strength after immersion in water at 80 °C for 24 h. The proton conductivities of the SPAEK films increased with SC and temperature, reaching values above 3.3×10−2 S/cm at 80 °C for SC≥0.76. Tensile strength measurement indicated that SPAEK membranes with SC 0.76, 0.98 and 1.16 are tough and strong at ambient conditions. Consequently, these materials are promising as proton exchange membranes (PEM) for fuel cells operated at medium temperatures. 相似文献
18.
In this communication, we report for the first time the synthesis of a new electroactive poly(aryl ether ketone) derived from the phenyl-capped aniline tetramer. The general properties are studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polymer has high serving temperature and good thermal stability. And its chemical oxidation process was studied by UV-Vis spectra. It was found the polymer was oxidized to its EB form and then to the pernigraniline oxidation state, which is same as the PANI. 相似文献
19.
New copoly(aryl ether ketone)s have been synthesized by polycondensation of 2,2′,3,3′,6,6′‐hexaphenyl‐4,4′‐diphenol, 2,2′‐p‐hydroxyphenyl‐iso‐propane, and 4,4′‐difluorobenzophenone. The technology of 13C‐NMR was used to determine contents of the two bisphenols in the copolymers. Chain structure was characterized by illustrating average block length (LA, LC) in terms of portion of the triads (AKA, CKC, AKC). The obtained copoly(aryl ether ketone)s have the properties of excellent solubility, high heat‐resistance, good tensile strength, and good selectivity for gas permeability. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 20–24, 2000 相似文献
20.
以4,4’-二氯二苯砜、4,4’-二羟基二苯砜和2,4-二羟基二苯砜为单体,通过缩聚合成一系列主链含异构体醚键单元的聚芳醚砜共聚物,利用核磁共振碳谱(13C NMR)、差示扫描量热分析(DSC)和高压毛细管流变仪对产物进行了测试和分析。对比不同产物的熔体黏度、玻璃化转变温度和力学性能,发现随着共聚单元含量的增加,聚芳醚砜共聚物的流动性逐渐提高,玻璃化转变温度逐渐降低,并且屈服点伸长率和缺口冲击强度均逐渐提高。这一结果对实际应用中提高聚芳醚砜树脂流动性和韧性、降低热加工温度等具有重要的指导意义。 相似文献