首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adrenalectomy (ADX) is known to block the acquisition of intravenous cocaine self-administration. A previous study therefore examined whether ADX decreases sensitivity of the 'brain reward system' in general, or its response to cocaine in particular, by measuring thresholds for intracranial self-stimulation with and without concurrent cocaine administration. ADX had no effect on thresholds for lateral hypothalamic self-stimulation (LHSS) and did not alter the cocaine dose-response curve for lowering the LHSS threshold. This result suggested that ADX does not affect sensitivity of the brain reward system. However, medial prefrontal cortex (MPFC) appears to be an important site in the mediation of cocaine reinforcing effects, and MPFC self-stimulation (MPFCSS) is mediated by a neural substrate that is largely independent of that which mediates LHSS. The present study therefore assessed whether ADX diminishes cocaine facilitation of MPFCSS. It was found that the threshold-lowering effect of cocaine (5.0, 10.0 and 20.0 mg/kg, i.p. ) did not differ between ADX rats maintained on 0.7% saline, ADX rats maintained on corticosterone (50 microg/ml) in 0.7% saline, and sham-operated controls. However, there was a trend toward desensitization of MPFCSS, itself, following ADX in the group that did not receive corticosterone supplementation. Based on this observation, and the similar responses of MPFCSS and cocaine self-administration to noncontingent priming stimulation, stress, and NMDA receptor antagonism, it is speculated that acquisition of MPFCSS and cocaine self-administration may be dependent upon a common sensitization process that is regulated by corticosterone.  相似文献   

2.
Staurosporine, a potent inhibitor of protein kinases, caused the rapid outgrowth of neurites from cultured dorsal root ganglia of chick embryos and from PC12D cells, a subline of PC12 cells. Treatment of dorsal root ganglia with 1 to 20 nM staurosporine resulted in the extensive outgrowth of neurites that were indistinguishable from those induced by NGF, as assessed by phase-contrast microscopy, electron microscopy and cytochemical staining of actin and tubulin. However, neurites generated from the ganglia in response to the higher concentrations of staurosporine (40-100 nM) seemed to have different characteristics, possibly as a result of the inhibition of cell migration from ganglia. The sequential changes in morphology of PC12D cells in response to staurosporine and to NGF were revealed by staining of actin. Ruffling membranes emerged at the margins of PC12D cells within 4 min after the addition of staurosporine or of NGF. From 10 min to 24 h after the addition of either compound, the ruffles were transformed into several projections that became growing neurites. The formation of ruffles and the outgrowth of neurites were both apparent at a concentration of staurosporine of 10 nM. The neurites that emerged from PC12D cells in response to staurosporine and in response to NGF were indistinguishable under the phase-contrast microscope and after staining of actin and tubulin. However, staurosporine never promoted survival of PC12D cells in serum-free conditions as that promoted by NGF. The observations indicate that staurosporine at nanomolar concentrations may reproduce the neurogenic changes that induced by NGF in primed neuronal cells, although it can not mimic the action of NGF that supports survival of neurons.  相似文献   

3.
Recent studies show that neuropeptide Y acts indirectly, via release of a neurotrophic factor(s) from the spinal cord, to increase the neurite outgrowth of dissociated adult rat dorsal root ganglion cells. This study examines further the neuropeptide Y-induced increase in neurite outgrowth. To characterize the factor(s) mediating the neuropeptide Y-induced increase in neurite outgrowth, we have examined whether antisera to either nerve growth factor or neurotrophin-3 influence the neuropeptide Y-induced increase in neurite outgrowth. Spinal cord slices were incubated with media alone or in combination with 10 nM neuropeptide Y for 2 h at 37 degrees C. The supernatant of spinal cord incubated with neuropeptide Y significantly enhanced the neurite outgrowth of normal dorsal root ganglion cells. Antiserum against nerve growth factor had no effect on the trophic actions of the supernatant. Antiserum against neurotrophin-3, however, significantly attenuated the increase in neurite outgrowth. Consistent with this finding, neurotrophin-3 also increased the percentage of cells with neurites. Transganglionic labelling of A-fibres with choleragenoid-horseradish peroxidase in animals treated intrathecally with neurotrophin-3 for 14 days via an osmotic pump showed that the area of choleragenoid-horseradish peroxidase label expanded into lamina II. In comparison, saline-treated animals had no label in lamina II. In addition, neurotrophin-3-treated animals also had a significant decrease in mechanical nociceptive threshold. The results suggest that neuropeptide Y acts via neurotrophin-3 to mediate an increase in neurite outgrowth of dorsal root ganglion cells. These results have important implications for the mechanisms underlying neuropathic pain.  相似文献   

4.
Murine peritoneal macrophages, activated by BCG vaccine, and human peripheral blood monocytes, activated by lipopolysaccharides, exerted neurite stimulating or neurite inhibiting effects in various periods of activation. The supernatants of these preparations were active in organotypic culture of chick embryo dorsal root ganglia. The inhibition of neurite growth on the 1st day of cultivation was followed by the neurite-stimulating effect. The fluctuation of neurite-inhibition and neurite-stimulation effect of macrophage supernatants suggest the availability of certain changes in cytokine composition in different periods of macrophage activation.  相似文献   

5.
The mechanism of neurite penetration of three-dimensional fibrin matrices was investigated by culturing embryonic chick dorsal root ganglia (DRGs) within fibrin gels, upon fibrin gels, and upon laminin. The length of neurites within three-dimensional matrices of fibrin was decreased in a concentration-dependent manner by agents that inhibited plasmin, e.g. aprotinin, or that inhibited plasminogen activation, e.g., epsilon-aminocaproic acid (EACA), or plasminogen antiserum. In contrast, such agents increased the length of neurites growing out from DRGs cultured upon two-dimensional substrates of fibrin and had no effect on the length of neurites growing out from DRGs cultured upon laminin. Visualization of neurites within three-dimensional fibrin matrices demonstrated that the distance between fibrin strands was much smaller than the diameter of neurites. All these data were consistent with the hypothesis that fibrinolysis localized to the region of the neurite tip is an important mechanism for neurite penetration of a physical barrier of fibrin strands arranged in a three-dimensional matrix.  相似文献   

6.
Dendrites of horizontal cells in the carp retina which invaginate the cone pedicles form numerous spinules during light adaptation. We have analyzed the contribution of cytoskeletal elements to this process. Isolated horizontal cells and frozen sections were screened with phalloidin for the existence of F-actin. F-actin was present in all types of horizontal cells and particularly enriched in the distal parts of the dendrites. Electron microscopical analysis demonstrated that interruption of the F-actin polymerization with cytochalasin B inhibited the formation of spinules during light adaptation. The persistence of spinules was also affected. Cytochalasin B also prevented the light-independent, phorbol ester-induced formation of spinules. Cytochalasin B only affected the morphology of the lateral, spinule-forming dendrites of cone horizontal cells within the cone pedicles, leaving the central, non spinule-forming dendrites of cone horizontal cells and the processes of rod horizontal cells within rod spherules unaffected. Whereas cytochalasin B prevented the protrusion of spinules, the spinule-associated membrane densities were only slightly affected. The two main characteristics of spinules, protrusion and membrane densities are therefore independently regulated processes.  相似文献   

7.
Following dorsal root crush, the lesioned axons regenerate in the peripheral compartment of the dorsal root, but stop at the boundary between the peripheral and the central nervous system, the dorsal root transitional zone. We have previously shown that fibres from human fetal dorsal root ganglia grafted to adult rat hosts are able to grow into the spinal cord, but were not able to specify the route taken by the ingrowing fibres. In this study we have challenged the dorsal root transitional zone astrocyte boundary with human dorsal root ganglion transplants from 5-8-week-old embryos. By tracing immunolabelled human fibres in serial sections, we found that fibres consistently grow around the dorsal root transitional zone astrocytes in laminin-rich peripheral surroundings, and extend into the host rat spinal cord along blood vessels, either into deep or superficial laminae of the dorsal horn, or into the dorsal funiculus. Human fibres that did not have access to blood vessels grew on the spinal cord surface. These findings indicate, that in spite of a substantial growth capacity by axons from human embryonic dorsal root ganglion cells as well as their tolerance to non-permissive factors in the mature mammalian CNS, these axons are still sensitive to the repellent effects of astrocytes of the mature dorsal root transitional zone. Furthermore, this axonal ingrowth is consistently associated with laminin-expressing structures until the axons reach the host spinal cord.  相似文献   

8.
In this study we have employed the whole cell patch clamp technique to investigate the effects of an anti-cancer drug cisplatin on basic electrophysiological properties of cultured dorsal root ganglion neurones from neonatal rats. The results show that within the clinical concentration range, cisplatin (0.1 to 10 microM) caused a decrease in input conductance, and complex changes in resting membrane potential in these cultured sensory neurones. The dominant effects of cisplatin on input conductance may be due to inhibition of leak conductances. Transplatin (5 microM) was significantly less effective than cisplatin at reducing input conductance which suggests a degree of stereoselectivity. Cisplatin (1 to 5 microM) transiently increased excitability of the cultured neurones as reflected by a reduction in the threshold for activation of action potentials by 8 mV. The rise time, peak amplitude and duration of action potentials were not changed by acute application of 5 microM cisplatin. Long term treatment of neurones with cisplatin (5 microM), for up to 1 week reduced the viability of the cultures, and attenuated neurone excitability, although input conductance of the cells was significantly increased to 322 +/- 49 M omega (n = 9) compared with controls of 210 +/- 20 M omega (n = 30; P < 0.05). Acute and chronic treatment of cultured neurones with cisplatin therefore produced contrasting actions.  相似文献   

9.
The structural element of an eukaryotic chromosome is the so-called chromatin fibre. It is a DNA-protein complex of about 100-200 A thickness and most probably running through from one end of a chromatid to the other. The fine structure of this DNA-protein fibre suggests a core of globular histone subunits around which the DNA-molecule is wound. The single strandedness of chromatids is suggested by the structure of premature condensed chromosomes. The course G-banding seen in metaphase chromosomes is presumably caused by groups of much finer bands seen in decondensed chromosomes. The number of such fine bands in the human genome is estimated to be 10 000-100 000, figures which are in the range of the number of genes in man.  相似文献   

10.
Expression of trk receptors is a major determinant of neurotrophin responsiveness of sensory neurons. Although it has been apparent for some time that subpopulations of dorsal root and trigeminal ganglion neurons respond in vitro to each of the members of the neurotrophin family, the extent to which functionally distinct subclasses of sensory neurons are dependent on the actions of different neurotrophins for their development and function remains an active area of investigation. One step towards elucidating the role of various neurotrophins in development and function of sensory neurons has been to examine the distribution of trk receptors on sensory neurons. These studies have clearly revealed that members of the trk family are differentially expressed in functionally distinct populations of both developing and mature sensory neurons and, further, have provided evidence consistent with a shift in neurotrophin responsiveness during the development of sensory neurons.  相似文献   

11.
The effect of diabetes mellitus on opiate-mediated inhibition of calcium current density (I(D Ca) [pA pF-1]) and cytosolic calcium response ([Ca2+]i nM) to depolarization with elevated KCl and capsaicin was assessed. Experiments were performed on isolated, acutely dissociated dorsal root ganglion (DRG) neurons from diabetic, BioBreeding/Worcester (BB/W) rats and age-matched control animals. Sciatic nerve conduction velocity was significantly decreased in diabetic animals compared to controls. Mean I(DCa) and [Ca2+]i responses to capsaicin and elevated KCl recorded in DRGs from diabetic animals were significantly larger than those recorded in DRG neurons from controls. In neurons from diabetic animals, the opiate agonist dynorphin A (Dyn A; 1, 3, and 5 microM) had significantly less inhibitory effect on I(D Ca) and KCl-induced [Ca2+]i responses compared to controls. Omega-conotoxin GVIA (omega-CgTX; 10 microM) and pertussis toxin (PTX; 250 ng ml-1) abolished Dyn A-mediated inhibition of I(DCa) and [Ca2+]i in control and diabetic neurons, suggesting that Dyn A modulated predominantly N-type calcium channels coupled to opiate receptors via PTX-sensitive (Gi/o) inhibitory G proteins. These results suggest that opiate-mediated regulation of PTX-sensitive, G protein-coupled calcium channels is diminished in diabetes and that this correlates with impaired regulation of cytosolic calcium.  相似文献   

12.
13.
The spatiotemporal distribution of cell death in the chick embryo neural tube and spinal cord (brachial region) was examined between stage (St.) 12 and 22, in plastic semithin sections. Between St. 12 and 16, the total number of pycnotic cells per segment was low, whereas after St. 16 the number of pycnotic cells was substantially increased. Between St. 17 and 19 three cell death foci or regions could be recognized. One region, the dorsal pycnotic zone, was located in the most dorsal part of the spinal cord, including the neural crest, with the highest number of pycnotic cells observed at St. 18. The second region, or ventral pycnotic zone, was located between motoneurons and the floor plate and had the highest number of dying cells at St. 17. The third region, the floor plate pycnotic zone, was located in the midportion of the floor plate and had the greatest amount of cell death at St. 19. Although low numbers of pycnotic cells were also observed in other regions between St. 17 and 19, no pycnotic cells were found in the ventrolateral region that gives rise to motoneurons. Ultrastructural observations as well as data from in situ nick end labeling indicate that the pycnotic cells observed in the neural tube die by apoptosis and that the debris from the dead cells is phagocytized primarily by adjacent healthy neuroepithelial cells. Although the spatiotemporal distribution of pycnotic cells suggests that cell death at these early stages could play a role in establishing the pioneer axonal pathway for spinal commissural neurons, preliminary observations following perturbations of cell death do not support this notion. Alternatively, early cell death may be involved in the regulation of cellular patterning along the dorsoventral axis of the neural tube by a kind of negative selection of specific progenitor cells.  相似文献   

14.
The aim of these experiments was to determine the state of maturity of dorsal root ganglia and axons in opossums (Monodelphis domestica) at birth and to assess quantitatively changes that occur in early life. Counts made of dorsal root ganglion cells at cervical levels showed that the numbers were similar in newborn and adult animals, approximately 1,600 per ganglion. In cervical dorsal root ganglia of newborn animals, division of neuronal precursors cells had ceased. The number of axons in cervical dorsal roots was similar in newborn and adult animals (about 4,500). For each ganglion cell body, approximately three axons were counted in the dorsal root. At birth, dorsal roots contained several bundles about 30 microns in diameter consisting of small axons (0.05-2 microns in diameter). A few non-neural cells were identified as Schwann cell perikarya, each enclosing a number of neurites. Later, marked changes occurred in Schwann cells and in their relationship to axons in the roots. Thus, at 12 days, an increase occurred in the number of Schwann cells and fibroblasts, and the bundles had enlarged to about 80 microns with little increase in axon diameter (0.1-2 microns). By 18 days, the bundles were larger, and myelination had already started. At 23 days, the dorsal root contained more than 500 myelinated axons that could reach 5 microns in diameter. The adult dorsal root enclosed about 900 myelinated axons. Throughout this time, the relationship between the Schwann cells and axons changed. Together, these results indicate that the number of axons and cell bodies of sensory dorsal root ganglia in opossum do not show major changes after birth. In addition, these results set the stage for quantitative studies of regeneration of dorsal column fibers in injured neonatal opossum nervous system.  相似文献   

15.
A number of studies have examined bradykinin-induced sensitization of primary afferent neurons to mechanical or thermal stimuli. However, bradykinin-induced sensitization to other chemical stimuli has not been systematically addressed. We used primary cultures of dorsal root ganglion neurons from neonatal rats to determine whether bradykinin alters the responsiveness of individual neurons to capsaicin and protons. An increase in the concentration of free intracellular Ca2+ was used as a measure of a response to capsaicin or low pH. Pretreatment with bradykinin (30 nM) increased the proportion of "intermediate-size" (240-320 microm2) dorsal root ganglion neurons that responded to capsaicin (100 nM) or low pH (6.1). However, among "small-size" (160-239 microm2) neurons, bradykinin increased the proportion of neurons that responded to low pH (6.1) but not to capsaicin (10 or 100 nM). Because treatment with arachidonic acid (10 microM) did not mimic the effect of bradykinin and inhibition of cyclo-oxygenase and lipoxygenase with 5,8,11,14-eicosatetraynoic acid (10 microM) did not inhibit the effect of bradykinin on the response to capsaicin, it is not likely that the bradykinin-induced enhancement of neuronal responsiveness is mediated by arachidonic acid or its metabolites in this model. These results support the hypothesis that bradykinin sensitizes primary afferent neurons to other chemicals such as protons that are present in inflamed tissue, particularly by recruiting additional sensory neurons to respond to a given chemical stimulus. An increase in the number of responsive nociceptors that innervate inflamed tissue would contribute to hyperalgesia via spatial summation on spinal neurons in the pathway for pain. Furthermore, since bradykinin enhanced the responsiveness of small-size neurons that responded to protons but not to capsaicin, these data suggest that bradykinin-induced sensitization to protons and capsaicin occur by different mechanisms.  相似文献   

16.
Neurotoxic effects of cisplatin and the cisplatin-procaine complex cis-diaminechloro-[2-(diethylamino)ethyl 4-aminobenzoate, N4]-chlorideplatinum(II) monohydrochloride monohydrate (DPR) were compared in organotypic cultures of chick embryonic dorsal root ganglia maintained in a semi-solid (soft agar) culture medium. The changes of two characteristics of the neurite outgrowth, the mean radial length of neuritic processes growing out from the ganglia and the area of neurite outgrowth around the ganglion, were used as parameters to evaluate the toxic effect of both compounds. The drugs were administered to the cultures at concentrations ranging from 13 to 120 microM. The half-maximum inhibition concentration (IC50) was determined from the concentration-response curves for both the mean radial length of neurites and the area of neurite outgrowth. An analysis of these parameters revealed that DPR was significantly less neurotoxic than cisplatin. In fact, considering the mean radial length of neurite processes, the IC50s of cisplatin were 56, 65 and 66 microM after 24, 48 and 72 h of exposure, respectively. By contrast, for DPR the IC50s were 116 microM after 24 h, and greater than 120 microM after 48 and 72 h of exposure. When we considered the area index (i.e. the area of neurite outgrowth normalized for the area of the ganglia), the IC50s for cisplatin were 41, 52 and 55 microM after 24, 48 and 72 h of exposure, respectively, whereas for DPR the IC50s were 59 microM after 24 h, and greater than 120 microM after 48 and 72 h of exposure. Our results support previous findings of lower toxicity of DPR to non-neoplastic tissues, as compared to cisplatin.  相似文献   

17.
Replication-defective adenoviruses have received increasing attention as vectors for exogenous gene administration in a variety of experimental and pathological conditions. However, little information exists about their utility for in utero gene therapy, and no information exists concerning their efficacy for gene delivery during initial organogenesis in the mammalian embryo. To evaluate the feasibility of using these vectors for exogenous gene transduction during the initial stages of organogenesis in the mammal, we injected an adenovirus vector carrying the bacterial beta-galactosidase (lacZ) gene under the control of either the cytomegalovirus (CMV) promoter or the Rous sarcoma virus (RSV) long terminal repeat (LTR) into early, post-gastrulation, mouse embryos, and evaluated expression following 36-48 h in culture. These studies suggest that adenovirus-mediated gene delivery may provide an efficient method of gene transduction during critical developmental stages with no detectable adverse effects on normal development during early morphogenesis. In addition, the type of promoter used had a significant effect on the tissue distribution of gene expression.  相似文献   

18.
19.
20.
The clinically employed general anaesthetic halothane was shown to exert action on the peripheral nervous system by suppressing spinal reflexes, but it is still unclear which mechanisms underlie this action. The present study addressed the question whether blockade of tetrodotoxin-sensitive (TTXs) and -resistant (TTXr) Na+-channels in rat dorsal root ganglia (DRG) neurons by halothane could explain its peripheral effects. Two types of TTXr Na+-currents, fast and slow, with distinct activation and inactivation kinetics were found in small (< 25 micrometer) and medium sized (25-40 micrometer) DRG neurons. These currents were blocked by halothane with IC50 values of 5.4 and 7.4 mmol/L, respectively. Additionally, in a concentration-dependent manner halothane accelerated the inactivation kinetics of both currents and shifted the inactivation curves to more hyperpolarized potentials. Neither the activation curves of both TTXr Na+-currents were influenced by halothane nor a voltage-dependent block at test potentials of the currents was seen. In contrast to that of fast current, the time-to-peak for slow current was changed in the presence of halothane. The TTXs Na+-current which prevailed in large neurons (> 40 micrometer) was blocked by halothane with an IC50 of 12.1 mmol/L. Its inactivation curve was also shifted to more hyperpolarized potentials and the inactivation kinetics accelerated with increasing halothane concentration. Similarly to TTXr Na+-currents, the activation curve of TTXs Na+-current and its time-to-peak were not influenced by halothane. It is suggested that two types of TTXr Na+-currents can explain the heterogeneity in kinetic data for TTXr Na+-currents. Furthermore, the incomplete blockade of Na+-currents might underlie the incomplete reduction of spinal reflexes at clinically used concentrations of halothane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号