共查询到20条相似文献,搜索用时 109 毫秒
1.
R树能较好地满足逆向工程、CAD/CAM、机器视觉等领域的动态数据维护及空间查询需求,而CR树是其优秀的变体之一。针对CR树的上溢结点分裂算法存在的聚类结果不理想以及计算代价过高等问题,提出一种主元分析导向的增量式k均值算法,可在既有分类中心附近的第一主元方向上搜索新的初始分类中心。将该算法与Silhouette指标相结合应用于求解由上溢结点分裂问题所转化的点集聚类问题,能以较小的计算代价自适应获取近似全局最优的点集聚类结果。试验结果表明,基于增量式聚类的R树上溢结点分裂算法在R树构建效率、存储利用率及空间查询等方面的综合性能优于CR树与RR*树。 相似文献
2.
3.
考虑到现有费舍尔判别分析(FDA)及其改进算法无法同时有效利用有标签数据和无标签数据进行学习,提出一种基于密度峰值聚类的正则化局部费舍尔判别分析(DPC-RLFDA)算法。该算法首先利用密度峰值聚类算法得到的伪标签构造两个正则化项来规范局部FDA的类间散度矩阵和类内散度矩阵;然后通过求解目标函数得到最优投影向量。此外,为适用于非线性非高斯分布数据集,提出了基于核的DPC-RLFDA。在人工数据集和UCI数据集上的实验结果表明,与FDA及其改进算法相比,所提算法的判别性能得到了显著提升。 相似文献
4.
5.
基于FCM聚类的粒子滤波多目标跟踪算法 总被引:3,自引:1,他引:3
针对多目标跟踪中相似目标的发散问题和跟踪核函数窗宽固定的缺陷,提出一种基于FCM(fuzzy C-means)聚类的粒子滤波算法.该算法结合经典粒子滤波理论,使用可变椭圆作为粒子区域,在粒子滤波的重要性重采样后,通过Mean-Shift算法获得每个目标的聚类中心,使用FCM聚类算法完成粒子聚类,获得相应目标的粒子子群,最后通过粒子子群估计各目标的最终状态并修正核窗口宽度.实验表明,与传统粒子滤波算法相比,该算法解决了传统粒子滤波的发散问题,减少了粒子数量,能够准确地对多目标进行跟踪,具有很好的鲁棒性和实时性. 相似文献
6.
基于聚类和距离的大数据集离群点检测算法 总被引:2,自引:0,他引:2
针对已有的基于距离的离群点检测算法在大数据集上扩展性差的问题,提出了基于聚类和距离混合的大数据集离群检测算法.算法第一阶段采用层次聚类和k-means混合的层次k-means算法对数据进行聚类,并按照一个启发式规则对其进行排序.第二阶段在聚类的结果上采用嵌套循环算法进行离群检测,并通过两个剪枝规则进行高效舅枝,减少了离群检测时数据点之间距离计算的次数.理论分析和实验结果证明了算法的可行性和效率. 相似文献
7.
8.
基于模糊C-均值聚类算法的柴油机磨损模式识别 总被引:1,自引:0,他引:1
将模糊C-均值聚类算法应用到柴油机磨损模式评价体系中,通过聚类中心和归一化的标准向量建立了磨损模式的模糊分析模型.对实际采集的20个样本进行模糊聚类分析,并与贴近度算法所得结果进行比较,证明模糊C-均值聚类算法对柴油机磨损模式的识别是准确、有效的. 相似文献
9.
相似性度量的选择是谱聚类算法良好性能实现的关键。通常采用的谱聚类相似性的度量是基于高斯核函数的相似性度量。然而,谱聚类对这种相似度度量中的尺度参数非常敏感,并且确定一个合适的参数也很困难。另外,基于欧几里得的这种高斯核相似度度量无法有效反映复杂分布数据集的分布特点。针对此问题,通过利用基于核模糊C均值聚类算法得到的划分矩阵中隶属度的分布特点,提出了一个新的核模糊相似度度量,并将基于所提出的新的相似度度量的谱聚类算法(KFSC)应用于图像分割中。所提出的KFSC算法不仅克服了谱聚类对尺度参数敏感,而且解决了尺度参数很难确定的问题,获得更好的聚类效果。3个标准数据集、2个合成纹理图像及2个自然图像上的分割实验表明了所提出算法的有效性和鲁棒性。 相似文献
10.
11.
针对风机振动信号的非平稳和非线性特征,提出了一种基于时域信号分析和改进的k-均值聚类算法的故障识别方法。对离心式风机运行中产生的几种非稳态振动故障信号,提取其时域信号的峰峰值、Hurst指数和近似熵参数作为特征向量,采用改进的k-均值聚类算法作为故障分类器,设置转子不平衡、联轴器不对中、风机基座松动、转轴径向摩擦和轴承内圈损坏5种故障。对离心式风机试验的结果表明,3种时域特征能较好地反映各故障之间的差异,改进的k-均值聚类算法与原始的k-均值算法相比分类性能更好,稳定性更强,平均识别率达到88.67%。 相似文献
12.
路径规划能力是AGV(Automated Guided Vehicle,自动导引运输车)系统智能化程度的体现。在众多算法中,A~*算法使用代价消耗估算方式达到较快的计算能力,被广泛应用于AGV的路径规划中,但仍存在局部最优的规划问题,规划的路径上存在冗余节点和较多不必要拐点。为减少运输路径中的总能耗,缩短路径总长度和减少AGV转弯次数,采用分裂和筛选的方案对传统A~*算法进一步优化,提出改进A~*算法,使其在实际工作环境中搜索更加迅速、考虑更加周密。在传统A~*算法基础上,在未知节点的启发函数里增加转弯权值,可以在计算规划过程中考虑转向所带来的消耗,从而减少转弯次数。使用任务分裂方案可以尽可能多地选择出较优路径,其中的最优解能够实现得转弯较少,展现出比较平滑的线路。基于Ubuntu下ROS系统版本进行仿真,对比实验结果表明,改进A~*算法在规划时间、总行程以及转弯消耗等方面都优于传统A~*算法,提升了AGV的实际运行效率,减少了AGV小车的耗能,可以缩短路径搜索规划时间,更符合工厂环境对AGV的需求。 相似文献
13.
针对复杂非结构化环境下移动机器人的路径规划问题,提出了将全局与局部规划算法相融合的路径规划方法。首先,对传统A*方法进行了有效的改进,新的A*算法能够完成机器人的路径规划任务,利用二次A*搜索方法得到了优化后的路径点,缩短了移动机器人的行驶路径。进一步,动态切点法可以有效地对已规划路径进行平滑处理;然后,综合考虑路径和环境的情况,采用改进的人工势场方法对移动机器人进行了局部路径规划,通过增设虚拟子目标的方法解决局部极小值问题,利用自适应步长调节算法对移动机器人的步长进行了动态优化;最后,针对不同场景,利用数值仿真将该算法与传统算法进行比较,结果表明该算法在不同环境路径规划的问题上具有一定的先进性和优越性。 相似文献
14.
为加快无线传感器网络路径搜索速度,减少了路径寻优能量消耗,提出了基于最优-最差蚂蚁系统(best-worst out system,简称BWAS)算法的无线传感器网络动态分簇路由算法.该算法是基于无线传感器网络动态分簇能量管理模式,在簇头节点间运用BWAS算法搜寻从簇头节点到汇聚节点的多跳最优路径,以多跳接力方式将数据发送至汇聚节点.BwAS算法在路径搜寻过程中评价出最优最差蚂蚁,引入奖惩机制,加强搜寻过程的指导性.结合动态分簇能量管理,避免网络连续过度使用某个节点,均衡了网络节点能量消耗.通过与基于蚂群算法(ACS)的路由算法仿真比较,本算法减缓了网络节点的能量消耗,延长了网络寿命,在相同时间里具有较少的死亡节点,具有较强的鲁棒性. 相似文献
15.
16.
17.
18.
19.