共查询到20条相似文献,搜索用时 78 毫秒
1.
为了准确预测小样本条件下露天矿山岩石的爆破块度,并得到小样本条件下预测露天矿山爆破块度的有效方法,借助最小二乘支持向量机工具(LS-SVMlab)构建基于最小二乘支持向量机回归(LS-SVR)预测模型并合理优化模型参数。分别使用15组露天矿山爆破数据和35组爆破数据作为小样本容量和正常样本容量,对模型的预测精度进行检验。结果表明:两种样本容量下LS-SVR预测模型的预测结果精度都比同样本容量下人工神经网络(ANN)回归预测的结果精度更高,说明所提出的LS-SVR模型适用于预测露天矿山爆破块度,并且在小样本条件下更具优势。 相似文献
2.
根据文本分类的特点,在对最小二乘支持向量机方法进行详细分析的基础上,创建了基于最小二乘支持向量机的多元文本分类器.实验表明,采用该文本分类器能够在保持较高分类精度和召回率的基础上,提高训练效率,具有一定的可行性. 相似文献
3.
误差修正是提高动态测量精度的有效途径,其中误差的建模是关键.在分析现有动态测量误差预测技术不足的基础上,提出基于改进的最小二乘支持向量机的动态测量误差回归建模和预测方法.在最小二乘支持向量机的基础上,通过将价值函数改为最小二乘价值函数以及用等式约束代替不等式约束,将求解的二次规划问题转变为一组等式方程,减少了待定参数的个数,很大程度地缩短了支持向量机的训练时间;同时针对最小二乘支持向量机稀疏性丢失这一缺陷,采用剪枝算法改进其性能,使其具有更好的稀疏性.通过实例验证及与其他建模方法的对比,表明该方法具有优良的预测效果和动态性能,为动态测量误差预测提供了一种新的可行方法. 相似文献
4.
根据时间序列近期数据较远期数据包含有更多未来信息的思想,对最小二乘支持向量机预测方法进行了扩展,得到了更具一般性的最小二乘支持向量机预测模型,给出了扩展后的预测模型具体算法。两个时间序列的预测实例表明,扩展后的预测方法获得了更好的预测效果,提升了最小二乘支持向量机预测方法的价值。 相似文献
5.
6.
7.
最小二乘支持向量机在热舒适性PMV指标预测中的应用研究 总被引:1,自引:0,他引:1
介绍了一种新型的机器学习算法一最小二乘支持向量机的原理,并针对预测PMV指标建立了最小二乘支持向量机预测模型。该模型的预测结果表明,最小二乘支持向量机预测准确度高,计算过程速度快,可以满足以PMV指标作为被控参数的空调系统控制的要求。 相似文献
8.
特大断面地下洞库爆破开挖工程中涉及到众多的影响因素,为了较准确地预测出爆破振动速度,引入支持向量机理论,建立最小二成支持向量机爆破振动速度预测模型(LS-SVM模型),该模型利用结构风险最小化来提高求解问题的速度和精度。采用该模型对某地下水封LPG洞库工程进行爆破振动速度预测,并与传统的萨道夫斯基回归公式模型(萨氏模型)和模糊神经网络模型(FNN模型)进行对比分析。分析结果表明:LS-SVM模型、FNN模型与萨氏模型的全局均方根相对误差RMSRE分别为4.68%、14.42%与19.33%;LS-SVM模型有14组数据满足预测模型泛化能力误差阀值(6%)的要求,而FNN模型与萨氏模型均不满足要求。因此LS-SVM模型在爆破振动速度预测中的预测性能和泛化能力均优于FNN模型及萨氏模型,可为多因素影响下类似工程爆破振动速度预测提供借鉴经验。 相似文献
9.
10.
复合材料结构损伤机理复杂,其损伤破坏一般呈现缓慢扩展趋势。为了有效地对复合材料结构健康状态进行预测,将距离形态相似度(DMS)和最小二乘支持向量机(LS-SVM)模型引入复合材料结构健康状态预测中,提出了基于DMS和LS-SVM的复合材料结构健康状态预测方法。首先,以复合材料层合板(T300/QY8911)为具体研究对象,对其进行损伤试验,采集其振动加速度作为表征其健康状态的原始信息,并进行小波包分解,利用分解得到的各个频带信号的样本熵作为特征向量;然后,采用距离形态相似度(DMS)方法确定结构健康指数;最后,将结构健康指数作为建模数据用以构建LS-SVM预测模型,预测复合材料结构健康指数。结果表明,该方法可以有效实现复合材料结构裂纹损伤的预测,具有很好的应用前景。 相似文献
11.
Muhammad Irfan Ali Raza Faisal Althobiani Nasir Ayub Muhammad Idrees Zain Ali Kashif Rizwan Abdullah Saeed Alwadie Saleh Mohammed Ghonaim Hesham Abdushkour Saifur Rahman Omar Alshorman Samar Alqhtani 《计算机、材料和连续体(英文)》2022,72(3):4249-4265
In the Smart Grid (SG) residential environment, consumers change their power consumption routine according to the price and incentives announced by the utility, which causes the prices to deviate from the initial pattern. Thereby, electricity demand and price forecasting play a significant role and can help in terms of reliability and sustainability. Due to the massive amount of data, big data analytics for forecasting becomes a hot topic in the SG domain. In this paper, the changing and non-linearity of consumer consumption pattern complex data is taken as input. To minimize the computational cost and complexity of the data, the average of the feature engineering approaches includes: Recursive Feature Eliminator (RFE), Extreme Gradient Boosting (XGboost), Random Forest (RF), and are upgraded to extract the most relevant and significant features. To this end, we have proposed the DensetNet-121 network and Support Vector Machine (SVM) ensemble with Aquila Optimizer (AO) to ensure adaptability and handle the complexity of data in the classification. Further, the AO method helps to tune the parameters of DensNet (121 layers) and SVM, which achieves less training loss, computational time, minimized overfitting problems and more training/test accuracy. Performance evaluation metrics and statistical analysis validate the proposed model results are better than the benchmark schemes. Our proposed method has achieved a minimal value of the Mean Average Percentage Error (MAPE) rate i.e., 8% by DenseNet-AO and 6% by SVM-AO and the maximum accurateness rate of 92% and 95%, respectively. 相似文献
12.
The accuracy of predicting the Producer Price Index (PPI) plays an indispensable role in government economic work. However, it is difficult to forecast the PPI. In our research, we first propose an unprecedented hybrid model based on fuzzy information granulation that integrates the GA-SVR and ARIMA (Autoregressive Integrated Moving Average Model) models. The fuzzy-information-granulation-based GA-SVR-ARIMA hybrid model is intended to deal with the problem of imprecision in PPI estimation. The proposed model adopts the fuzzy information-granulation algorithm to pre-classification-process monthly training samples of the PPI, and produced three different sequences of fuzzy information granules, whose Support Vector Regression (SVR) machine forecast models were separately established for their Genetic Algorithm (GA) optimization parameters. Finally, the residual errors of the GA-SVR model were rectified through ARIMA modeling, and the PPI estimate was reached. Research shows that the PPI value predicted by this hybrid model is more accurate than that predicted by other models, including ARIMA, GRNN, and GA-SVR, following several comparative experiments. Research also indicates the precision and validation of the PPI prediction of the hybrid model and demonstrates that the model has consistent ability to leverage the forecasting advantage of GA-SVR in non-linear space and of ARIMA in linear space. 相似文献
13.
目的 应对快速多变的市场,提前预知市场发展,制定相应的排产计划,使企业在竞争中占据先发优势。方法 目前基于灰色神经网络的预测算法,准确地预测产品需求通常需要连续且大量的样本数据,对小数据非线性系统的预测结果精确度低、可靠性差,针对这一问题,提出一种耦合遗传算法的灰色神经网络预测方法,综合灰色模型和神经网络理论,构建了面向产品订单量需求预测的灰色神经网络模型;通过电力机车产品实例分析了模型的预测性能;为解决预测过程中模型早熟收敛的问题,利用遗传算法对训练网络的权重和阈值进行了迭代优化。结论 研究结果表明,优化后产品预测模型的精确性和鲁棒性得到提高,验证了所设计方法的可行性。 相似文献
14.
15.
RFID技术可以优化易变质产品的流通速度,降低变质率对该类企业收益的影响。现代市场是开放型的系统,然而当前RFID技术投资成本过高,因此迫切需要研究开放系统下不同成本的易变质产品生产企业投资RFID技术的可行性。本文建立了不同成本易变质产品生产企业未投资RFID技术时的竞争博弈价格模型和合作博弈价格模型,分析了变质产品数量对产品定价的影响,得出竞合模式下保持企业较高收益且对新企业不产生吸引力的临界价格。在临界价格基础上,分析了投资RFID技术对易变质产品生产企业收益的影响,得出企业可承担的最大RFID标签成本,为该类企业RFID技术的投资提供了科学决策的依据。最后,通过数值模拟分析验证了所建立的模型。 相似文献
16.
17.
Abdullah Ali Salamai Ather Abdulrahman Ageeli El-Sayed M. El-kenawy 《计算机、材料和连续体(英文)》2022,70(3):5091-5102
E-commerce refers to a system that allows individuals to purchase and sell things online. The primary goal of e-commerce is to offer customers the convenience of not going to a physical store to make a purchase. They will purchase the item online and have it delivered to their home within a few days. The goal of this research was to develop machine learning algorithms that might predict e-commerce platform sales. A case study has been designed in this paper based on a proposed continuous Stochastic Fractal Search (SFS) based on a Guided Whale Optimization Algorithm (WOA) to optimize the parameter weights of the Bidirectional Recurrent Neural Networks (BRNN). Furthermore, a time series dataset is tested in the experiments of e-commerce demand forecasting. Finally, the results were compared to many versions of the state-of-the-art optimization techniques such as the Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), and Genetic Algorithm (GA). A statistical analysis has proven that the proposed algorithm can work significantly better by statistical analysis test at the P-value less than 0.05 with a one-way analysis of variance (ANOVA) test applied to confirm the performance of the proposed ensemble model. The proposed Algorithm achieved a root mean square error of RMSE (0.0000359), Mean (0.00003593) and Standard Deviation (0.000002162). 相似文献
18.
城市固体垃圾管理与城市发展的矛盾日益突出,固体垃圾量峰值的预测能力是检验城市垃圾管理水平的重要标志.传统预测方法大多利用平均值概念,不能有效地衡量数据动态变化和对峰值进行动态跟踪.基于此,提出一种改进的基于混合高斯分布的隐马尔科夫模型(GMM-HMM),用以动态跟踪城市垃圾量峰值.以小样本的上海市近30年固体垃圾量和大样本的城市废水量为案例,分别采用状态转移推知预测期望值和通过后验概率搜索历史最相似时刻做预测,并利用bootstrapping重采样方法对结果进行区间修正以减少初始分布带来的不确定性.案例结果验证了所提出方法的有效性和实用性. 相似文献
19.