首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对壁画图像具有较大类内差异的特点,提出一种分组策略,将样本空间划分为不同的子空间,每一个子空间中的所有训练样本训练分类器模型,测试阶段,根据测试样本落到的子空间来选择不同的分类模型对测试样本进行分类。在各个子空间训练分类器时,为了克服壁画图像较强背景噪音的影响,我们将每一幅壁画图像样本看作多个实例的组成,采用多实例学习的方式来训练分类器。训练过程中,我们引入隐变量用于标识每一个实例,隐变量的存在使得分类器的优化问题不是一个凸问题,因此我们无法用梯度下降法去直接求解,本文中我们采用迭代的方式训练Latent SVM作为每一个子空间的分类器。实验证明了本文的分类模型能够较大程度的解决壁画图像的类内差异以及背景噪音对分类结果造成的影响。  相似文献   

2.
Random set framework for multiple instance learning   总被引:1,自引:0,他引:1  
Multiple instance learning (MIL) is a technique used for learning a target concept in the presence of noise or in a condition of uncertainty. While standard learning techniques present the learner with individual samples, MIL alternatively presents the learner with sets of samples. Although sets are the primary elements used for analysis in MIL, research in this area has focused on using standard analysis techniques. In the following, a random set framework for multiple instance learning (RSF-MIL) is proposed that can directly perform analysis on sets. The proposed method uses random sets and fuzzy measures to model the MIL problem, thus providing a more natural mathematical framework, a more general MIL solution, and a more versatile learning tool. Comparative experimental results using RSF-MIL are presented for benchmark data sets. RSF-MIL is further compared to the state-of-the-art in landmine detection using ground penetrating radar data.  相似文献   

3.
In machine learning the so-called curse of dimensionality, pertinent to many classification algorithms, denotes the drastic increase in computational complexity and classification error with data having a great number of dimensions. In this context, feature selection techniques try to reduce dimensionality finding a new more compact representation of instances selecting the most informative features and removing redundant, irrelevant, and/or noisy features. In this paper, we propose a filter-based feature selection method for working in the multiple-instance learning scenario called ReliefF-MI; it is based on the principles of the well-known ReliefF algorithm. Different extensions are designed and implemented and their performance checked in multiple instance learning. ReliefF-MI is applied as a pre-processing step that is completely independent from the multi-instance classifier learning process and therefore is more efficient and generic than wrapper approaches proposed in this area. Experimental results on five benchmark real-world data sets and 17 classification algorithms confirm the utility and efficiency of this method, both statistically and from the point of view of execution time.  相似文献   

4.
G3P-MI: A genetic programming algorithm for multiple instance learning   总被引:1,自引:0,他引:1  
This paper introduces a new Grammar-Guided Genetic Programming algorithm for resolving multi-instance learning problems. This algorithm, called G3P-MI, is evaluated and compared to other multi-instance classification techniques in different application domains. Computational experiments show that the G3P-MI often obtains consistently better results than other algorithms in terms of accuracy, sensitivity and specificity. Moreover, it makes the knowledge discovery process clearer and more comprehensible, by expressing information in the form of IF-THEN rules. Our results confirm that evolutionary algorithms are very appropriate for dealing with multi-instance learning problems.  相似文献   

5.
多通道Haar-like特征多示例学习目标跟踪   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 提出一种基于多通道Haar-like特征的多示例学习目标跟踪算法,克服了多示例跟踪算法在处理彩色视频时利用信息少和弱特征不能更换的缺点。方法 首先,针对原始多示例学习跟踪算法对彩色视频帧采用单通道信息或将其简单转化为灰度图像进行跟踪会丢失部分特征信息的缺点,提出在RGB三通道上生成位置、大小和通道完全随机的Haar-like特征来更好地表示目标。其次,针对多示例学习跟踪算法中Haar-like弱特征不能更换,难以反映目标自身和外界条件变化的特点,提出在弱分类器选择过程中,用随机生成的新Haar-like特征实时替换部分判别力最弱的Haar-like特征,从而在目标模型中引入新的信息,以适应目标外观的动态变化。结果 对8个具有挑战性的彩色视频序列的实验结果表明,与原始多示例学习跟踪算法、加权多示例学习跟踪算法、基于分布场的跟踪算法相比,提出的方法不仅获得了最小的平均中心误差,而且平均跟踪准确率比上述3种算法分别高52.85%,34.75%和5.71%,在4种算法中获得最优性能。结论 通过将Haar-like特征从RGB三通道随机生成,并将判别力最弱的部分Haar-like弱特征实时更换,显著提升了原始多示例学习跟踪算法对彩色视频的跟踪效果,扩展了其应用前景。  相似文献   

6.
随着数据的海量型增长,如何存储并利用数据成为目前学术研究和工业应用等方面的热门问题。样例选择是解决此类问题的方法之一,它在原始数据中依据既定规则选出代表性的样例,从而有效地降低后续工作的难度。基于此,提出一种基于哈希学习的投票样例选择算法。首先通过主成分分析(PCA)方法将高维数据映射到低维空间;然后利用k-means算法结合矢量量化方法进行迭代运算,并将数据用聚类中心的哈希码表示;接着将分类后的数据按比例进行随机选择,在多次独立运行算法后投票选择出最终的样例。与压缩近邻(CNN)算法和大数据线性复杂度样例选择算法LSH-IS-F相比,所提算法在压缩比方面平均提升了19%。所提算法思想简单容易实现,能够通过调节参数自主控制压缩比。在7个数据集上的实验结果显示所提算法在测试精度相似的情况下在压缩比和运行时间方面较随机哈希有较大优势。  相似文献   

7.
根据文本分类通常包含多异类数据源的特点,提出了多核SVM学习算法。该算法将分类核矩阵的二次组合重新表述成半无限规划,并说明其可以通过重复利用SVM来实现有效求解。实验结果表明,提出的算法可以用于数百个核的结合或者是数十万个样本的结合,对于多异类数据源的文本分类具有较高的查全率和查准率。  相似文献   

8.
特征加权融合的在线多示例学习跟踪算法   总被引:1,自引:0,他引:1  
为了能更加准确鲁棒地跟踪目标,提出了特征加权融合的在线多示例学习跟踪算法(WFMIL)。WFMIL在多示例学习框架下分别训练两种特征(Hog和Haar)分类器。在跟踪过程中,通过线性运算融合成一个强分类器,同时在学习过程中对正包中的示例引入权重。实验结果统计表明WFMIL能很好地解决目标漂移问题,并且对目标遮挡、运动突变、光照变化以及运动模糊等具有较好的鲁棒性。  相似文献   

9.
基于高效多示例学习的目标跟踪   总被引:1,自引:0,他引:1  
彭爽  彭晓明 《计算机应用》2015,35(2):466-469
基于多示例学习(MIL)的跟踪算法能在很大程度上缓解漂移问题。然而,该算法的运行效率相对较低,精度也有待提高,这是由于MIL算法采用的强分类器更新策略效率不高,以及分类器更新速度与目标外观变化速度不一致引起的。为此提出一种新的强分类器更新策略,以大幅提升MIL算法的运行效率;同时提出一种动态更新分类器学习率的机制,使更新后的分类器更符合目标的外观,提高跟踪算法的精度。通过实验将该算法和MIL算法以及基于加权多示例学习的跟踪算法(WMIL)进行对比,实验结果表明,所提出算法的运行效率和跟踪精度都是三者中最好的,在背景中没有与被跟踪目标外观相似的干扰物体存在时有较好的跟踪优势。  相似文献   

10.
Min-Ling  Zhi-Jian 《Neurocomputing》2009,72(16-18):3951
In multi-instance multi-label learning (MIML), each example is not only represented by multiple instances but also associated with multiple class labels. Several learning frameworks, such as the traditional supervised learning, can be regarded as degenerated versions of MIML. Therefore, an intuitive way to solve MIML problem is to identify its equivalence in its degenerated versions. However, this identification process would make useful information encoded in training examples get lost and thus impair the learning algorithm's performance. In this paper, RBF neural networks are adapted to learn from MIML examples. Connections between instances and labels are directly exploited in the process of first layer clustering and second layer optimization. The proposed method demonstrates superior performance on two real-world MIML tasks.  相似文献   

11.
12.
在局部遮挡,光线变化,以及复杂背景环境下进行有效稳定的目标跟踪一直是一个长期困扰研究者的复杂问题。提出一种基于随机局部均值Hash特征的在线学习目标跟踪算法,算法的创新点为基于泊松概率分布的目标模型建立及其在线更新。算法首先利用已标定实际位置的目标图像来初始化目标模型及构建初始分类器池,由此求出下一帧的检测算子,同时基于多实例在线学习方法,利用检测到的目标样本(正样本)以及附近的背景样本(负样本)在线更新目标模型,求出新的检测算子用于后续帧的目标检测及跟踪。提出的算法与现有基于检测学习的OnlineBoostingTracker,SemiTracker,BeyondSemiTracker,Context Tracker和MILTracker跟踪算法在给定的四个标准视频序列中进行了跟踪性能比较。实验结果表明,在各种复杂环境下,该算法具备良好的综合跟踪性能,尤其在抗局部遮挡方面尤为突出。在抗目标旋转方面,该算法仍有待优化。  相似文献   

13.
The paper presents a supervised discriminative dictionary learning algorithm specially designed for classifying HEp-2 cell patterns. The proposed algorithm is an extension of the popular K-SVD algorithm: at the training phase, it takes into account the discriminative power of the dictionary atoms and reduces their intra-class reconstruction error during each update. Meanwhile, their inter-class reconstruction effect is also considered. Compared to the existing extension of K-SVD, the proposed algorithm is more robust to parameters and has better discriminative power for classifying HEp-2 cell patterns. Quantitative evaluation shows that the proposed algorithm outperforms general object classification algorithms significantly on standard HEp-2 cell patterns classifying benchmark1 and also achieves competitive performance on standard natural image classification benchmark.  相似文献   

14.
目的 传统的多示例学习跟踪在跟踪过程中使用了自学习过程,当目标跟踪失败时分类器很容易退化。针对这个问题,提出一种基于在线特征选取的多示例学习跟踪方法(MILOFS)。方法 首先,该文使用稀疏随机矩阵来简化视频跟踪中图像特征的构建,使用随机矩阵投影来自高维度的图像信息。然后,利用Fisher线性判别模型构建包模型的损失函数,依照示例响应值直接在示例水平构建分类器的判别模型。最后,从梯度下降角度看待在线增强模型,使用梯度增强法来构建分类器的选取模型。结果 对不同场景的图像序列进行对比实验,实验结果中在线自适应增强(OAB)、在线多实例学习跟踪(MILTrack)、加权多实例学习跟踪(WMIL)、在线特征选取多实例学习跟踪(MILOFS)的平均跟踪误差分别为36像素、23像素、24像素、13像素,本文算法在光照变化、发生遮挡,以及形变的情况下都能准确跟踪目标,且具有很高的实时性。结论 基于在线特征选取的多示例学习跟踪,跟踪过程使用梯度增强法并直接在示例水平构建包模型的判别模型,可以有效克服传统多示例学习中的分类器退化问题。  相似文献   

15.
为了提高文本分类的准确率并解决文本图卷积神经网络对节点特征利用不足的问题,提出了一种新的文本分类模型,其内在融合了文本图卷积和Stacking集成学习方法的优点。该模型首先通过文本图卷积神经网络学习文档和词的全局表达以及文档的语法结构信息,再通过集成学习对文本图卷积提取的特征进行二次学习,以弥补文本图卷积节点特征利用不足的问题,提升单标签文本分类的准确率以及整个模型泛化能力。为了降低集成学习的时间消耗,移除了集成学习中的k折交叉验证机制,融合算法实现了文本图卷积和Stacking集成学习方法的关联。在R8、R52、MR、Ohsumed、20NG等数据集上的分类效果相对于传统的分类模型分别提升了1.5%、2.5%、11%、12%、7%以上,该方法在同领域的分类算法比较中表现优异。  相似文献   

16.
刘博  景丽萍  于剑 《软件学报》2017,28(8):2113-2125
随着视频采集和网络传输技术的快速发展,以及个人移动终端设备的广泛使用,大量图像数据以集合形式存在.由于集合内在结构的复杂性,使得图像集分类的一个关键问题是如何度量集合间距离.为了解决这一问题,本文提出了一种基于双稀疏正则的图像集距离学习框架(DSRID).在该框架中,两集合间距离被建模成其对应的内部典型子结构间的距离,从而保证了度量的鲁棒性和判别性.根据不同的集合表示方法,本文给出了其在传统的欧式空间,以及两个常见的流形空间,即对称正定矩阵流形(symmetric positive definite matrices manifold,SPD manifold)和格林斯曼流形(Grassmann manifold)上的实现.在一系列的基于集合的人脸识别、动作识别和物体分类任务中验证了该框架的有效性.  相似文献   

17.
目的 高光谱遥感影像由于其巨大的波段数直接导致信息的高冗余和数据处理的复杂,这不仅带来庞大的计算量,而且会损害分类精度。因此,在对高光谱影像进行处理、分析之前进行降维变得非常必要。分类作为一种重要的获取信息的手段,现有的基于像素点和图斑对象特征辨识地物种类的方法在强噪声干扰训练样本条件下精度偏低,在对象的基础上,将光谱和空间特征相似的对象合并成比其还要大的集合,再按照各个集合的光谱和空间特征进行分类,则不容易受到噪声等因素的干扰。方法 提出混合编码差分进化粒子群算法的双种群搜索策略进行降维,基于支持向量机的多示例学习算法作为分类方法,构建封装型降维与分类模型。结果 采用AVIRIS影像进行实验,本文算法相比其他相近的分类方法能获得更高的分类精度,达到96.03%,比其他相近方法中最优的像元级的混合编码的分类方法精度高出0.62%。结论 在针对强干扰的训练样本条件下,本文算法在降维过程中充分发挥混合编码差分进化算法的优势,分类中训练样本中的噪声可以看做多示例学习中训练包"歧义性"的特定表现形式,有效提高了分类的精度。  相似文献   

18.
In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.  相似文献   

19.
近年来,知识表示学习已经成为知识图谱领域研究的热点。为了及时掌握当前知识表示学习方法的研究现状,通过归纳与整理,将具有代表性的知识表示方法进行了介绍和归类,主要分为传统的知识表示模型、改进的知识表示模型、其他的知识表示模型。对每一种方法解决的问题、算法思想、应用场景、评价指标、优缺点进行了详细归纳与分析。通过研究发现,当前知识表示学习主要面临关系路径建模、准确率、复杂关系处理的挑战。针对这些挑战,展望了采用关系的语义组成来表示路径、采用实体对齐评测指标、在实体空间和关系空间建模,以及利用文本上下文信息以扩展KG的语义结构的解决方案。  相似文献   

20.
We introduce a coefficient update procedure into existing batch and online dictionary learning algorithms. We first propose an algorithm which is a coefficient updated version of the Method of Optimal Directions (MOD) dictionary learning algorithm (DLA). The MOD algorithm with coefficient updates presents a computationally expensive dictionary learning iteration with high convergence rate. Secondly, we present a periodically coefficient updated version of the online Recursive Least Squares (RLS)-DLA, where the data is used sequentially to gradually improve the learned dictionary. The developed algorithm provides a periodical update improvement over the RLS-DLA, and we call it as the Periodically Updated RLS Estimate (PURE) algorithm for dictionary learning. The performance of the proposed DLAs in synthetic dictionary learning and image denoising settings demonstrates that the coefficient update procedure improves the dictionary learning ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号