首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The eutectoid transformation of austenite in spheroidal graphite cast iron can follow one of two paths: (a) transformation to a mixture of ferrite and graphite or (b) transformation to pearlite. The extents to which the two reactions occur determine the relative amounts of ferrite and pearlite in the microstructure and, hence, the properties of the iron. In this paper, the kinetics of the γ → α+ Gr reaction is studied, and a model is developed to predict the isothermal transformation rates. The transformation occurs at a rate determined by the rate of carbon diffusion. The diffusion of carbon through ferrite, as well as through austenite, has been considered. The model predicts that the volume fraction of austenite transformed isothermally increases with increasing number density of graphite spheroids. Predictions of the model are compared with data available in literature.  相似文献   

2.
Isothermal and continuous-cooling transformation kinetics have been measured dilatometrically for the γ → α+ γ′ and γ′ P reactions in a 1025 steel. The isothermal transformation of austenite for each reaction was found to fit the Avrami equation after the fraction transformed was normalized to unity at the completion of the reaction and a transformation-start time was determined. The transformation kinetics under isothermal conditions therefore were characterized in terms of then andb parameters from the Avrami equation together with the transformation-start times. The parametern was found to be independent of temperature over the range studied (645 to 760 ‡C) and to have values of 0.99 and 1.33 for the ferrite and pearlite reactions, respectively. This indicates that the nucleation condition is essentially constant and site saturation occurs early in the transformation process. The continuous-cooling experiments were conducted at cooling rates of 2 to 150 ‡C per second to determine the transformation-start times for the ferrite and pearlite reactions and the completion time for transformation to pearlite under CCT conditions. Both reactions were found to obey the Additivity Principle for continuous cooling provided that the incubation (pre-transformation) period was not included in the transformation time. The isothermal transformation data and CCT transformation-start times have been incorporated in a mathematical model to predict continuous-cooling transformation kinetics that agree closely with measurements made at three cooling rates.  相似文献   

3.
Spatially resolved X-ray diffraction (SRXRD) experiments have been performed during gas tungstenarc (GTA) welding of AISI 1045 C-Mn steel at input powers ranging from 1000 to 3750 W. In-situ diffraction patterns taken at discreet locations across the width of the heat-affected zone (HAZ) near the peak of the heating cycle in each weld show regions containing austenite (γ), ferrite and austenite (α+γ), and ferrite (α). Changes in input power have a demonstrated effect on the resulting sizes of these regions. The largest effect is on the γ phase region, which nearly triples in width with increasing input power, while the width of the surrounding two-phase α+γ region remains relatively constant. An analysis of the diffraction patterns obtained across this range of locations allows the formation of austenite from the base-metal microstructure to be monitored. After the completion of the αγ transformation, a splitting of the austenite peaks is observed at temperatures between approximately 860 °C and 1290 °C. This splitting in the austenite peaks results from the dissolution of cementite laths originally present in the base-metal pearlite, which remain after the completion of the αγ transformation, and represents the formation of a second more highly alloyed austenite constituent. With increasing temperatures, carbon, originally present in the cementite laths, diffuses from the second newly formed austenite constituent to the original austenite constituent. Eventually, a homogeneous austenitic microstructure is produced at temperatures of approximately 1300 °C and above, depending on the weld input power.  相似文献   

4.
Austenite nucleation and growth is studied during continuous heating using three-dimensional X-ray diffraction (3-D XRD) microscopy at the European Synchrotron Radiation Facility (ESRF) (Grenoble, France). Unique in-situ observations of austenite nucleation and growth kinetics were made for two commercial medium-carbon low-alloy steels (0.21 and 0.35 wt pct carbon with an initial microstructure of ferrite and pearlite). The measured austenite volume fraction as a function of temperature shows a two-step behavior for both steel grades: it starts with a rather fast pearlite-to-austenite transformation, which is followed by a more gradual ferrite-to-austenite transformation. The austenite nucleus density exhibits similar behavior, with a sharp increase during the first stage of the transformation and a more gradual increase in the nucleus density in the second stage for the 0.21 wt pct carbon alloy. For the 0.35 wt pct carbon alloy, no new nuclei form during the second stage. Three different types of growth of austenite grains in the ferrite/pearlite matrix were observed. The combination of detailed separate observations of both nucleation and growth provides unique quantitative information on the phase transformation kinetics during heating, i.e., austenite formation from ferrite and pearlite.  相似文献   

5.
The effect of additives on the eutectoid transformation of ductile iron   总被引:1,自引:0,他引:1  
The eutectoid transformation of austenite in cast iron is known to proceed by both the meta-stable γ → α + Fe3C reaction common in Fe-C alloys of near eutectoid composition, and by the direct γ → α + Graphite reaction, with the graphite phase functioning as a car-bon sink. In addition, the meta-stable cementite constituent of the pearlite can dissolve near the graphite phase (Fe3C → α + Graphite), producing free ferrite. Isothermal trans-formation studies on a typical ductile iron (nodular cast iron) confirmed that all of these reaction mechanisms are normally operative. The addition of 1.3 pct Mn was found to substantially retard all stages of the transformation by retarding the onset of the eutectoid transformation, decreasing the diffusivity of carbon in ferrite, and stabilizing the cemen-tite. Minor additions of Sb (0.08 pct) or Sn (0.12 pct) were found to inhibit the γ →α + Graphite reaction path, as well as the Fe3C → α + Graphite dissolution step, but did not significantly affect the meta-stable γ → α + Fe3C reaction. Scanning Auger microprobe analysis indicated that Sn and Sb adsorb at the nodule/metal interphase boundaries during solidification. This adsorbed layer acts as a barrier to the carbon flow necessary for the direct γ → α + Graphite and Fe3C → α + Graphite reactions. With the graphite phase dis-abled as a sink for the excess carbon, the metal transforms like a nongraphitic steel. The effects of Mn, Sn, and Sb on the eutectoid transformation of ductile iron were shown to be consistent with their behavior in malleable iron.  相似文献   

6.
The present article is concerened with the theoretical and experimental study of the growth kinetics of allotriomorphic ferrite in medium carbon vanadium-titanium microalloyed steel. A theoretical model is presented in this work to calculate the evolution of austente-to-allotriomorphic ferrite transformation with time at a very wide temperature range. At temperatures above eutectoid temperature, where allotriomorphic ferrite is the only austenite transormation product, thesoft-impingement effect should be taken into account in the modeling. In that case, the Gilmouret al., analysis reliably predicts the progress of austenite-to-allotriomorphic ferrite transformation in this steel. By contrast, since pearlite acts as a carbon sink, the carbon enrichment of austenite due to the previous ferrite formation is avoided, and carbon concentration in austenite far from the α/λ interface remains the same as the overal carbon content of the steel. Hence, the soft-impingement effect should be neglected, and allotriomorphic ferrite is considered to grow under a parabolic law. Therefore, assumption of a semi-infinite extent austenite with constant boundary conditions is suitable for the kinetics of the isothermal decomposition of austenite. An excellent agreement (higher than 93 pct inR 2) has been obtained between the experimental and predicted values of the volume fraction of ferrite in all of the ranges of temperature studied. C. CAPDEVILA, Research Associate, formerly with the Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalurgicas (CENIM), Consejo Superior de Investigaciones Cientificas (CSIC), 28040 Madrid, Spain  相似文献   

7.
The present article is concerned with the theoretical and experimental study of the growth kinetics of allotriomorphic ferrite in medium carbon vanadium-titanium microalloyed steel. A theoretical model is presented in this work to calculate the evolution of austenite-to-allotriomorphic ferrite transformation with time at a very wide temperature range. At temperatures above eutectoid temperature, where allotriomorphic ferrite is the only austenite transformation product, the soft-impingement effect should be taken into account in the modeling. In that case, the Gilmour et al. analysis reliably predicts the progress of austenite-to-allotriomorphic ferrite transformation in this steel. By contrast, since pearlite acts as a carbon sink, the carbon enrichment of austenite due to the previous ferrite formation is avoided, and carbon concentration in austenite far from the α/γ interface remains the same as the overall carbon content of the steel. Hence, the soft-impingement effect should be neglected, and allotriomorphic ferrite is considered to grow under a parabolic law. Therefore, assumption of a semi-infinite extent austenite with constant boundary conditions is suitable for the kinetics of the isothermal decomposition of austenite. An excellent agreement (higher than 93 pct in R 2) has been obtained between the experimental and predicted values of the volume fraction of ferrite in all of the ranges of temperature studied.  相似文献   

8.
Austenite and ferrite lattice parameters were monitored using X-ray diffraction subsequent to deformation in uniaxial and biaxial tension and plane straining of a 0.19C-1.63Si-1.59Mn transformation-induced plasticity (TRIP) sheet steel. Details from peak position results suggest the presence of stacking faults in the austenite phase, especially after deformation in uniaxial tension. The results also indicate residual stress or composition effects (through changes in the average carbon concentration due to selective transformation of lower carbon regions of austenite). Compressive residual stresses in the ferrite matrix were measured, and found to increase with increasing effective strain in specimens tested in biaxial tension and plane strain. Strain partitioning between softer ferrite and harder austenite (and possibly bainite or martensite) may be responsible for these residual compressive stresses in the ferrite, although volume expansion from the γα′ transformation and texture gradients through the sheet thickness are also possible contributors.  相似文献   

9.
We discovered a eutectoid reaction in an Fe-13.4Mn-3.0Al-0.63C (wt pct) steel after solution heat treatment at 1373 K (1100 °C) and holding at temperatures below 923 K (650 °C). The steel is single austenite at temperatures from 1373 K to 923 K (1100 °C to 650 °C). A eutectoid reaction involves the replacement of the metastable austenite by a more stable mixture of ferrite and M23C6 phases at temperatures below 923 K (650 °C). The mixture of ferrite and M23C6 is in the form of pearlitic lamellae. The morphology of the lamellae of the product phases is similar to that of pearlite in steels. Thus, we found a new pearlite from the eutectoid reaction of the Mn-Al steel featuring γ  → α + M23C6. A Kurdjumov–Sachs (K-S) orientation relationship exists between the pearlitic ferrite (α) and M23C6 (C6) grains, i.e., (110)α // (111)C6 and [[`1] \overline{1} 11]α // [0[`1] \overline{1} 1]C6. The upper temperature limit for the eutectoid reaction is between 923 K and 898 K (650 °C and 625 °C).  相似文献   

10.
The present investigation is concerned with basic studies of the development of transformation textures in steel weld metals, using the electron backscattering pattern (EBSP) technique. It is shown that the acicular ferrite (AF) plates exhibit an orientation relationship with both the austenite and the prior delta ferrite columnar grains in which they grow. The observed orientation relationship lies within the Bain orientation region and can be described by three texture components,i.e., a 〈100〉 component and two complementary 〈111〉 components. Each of these texture components is orientated approximately parallel with the original cell/dendrite growth direction. Measurements of the spatial misorientation between neighboring plates confirm that the morphology of AF in low-alloy steel weld metals bears a close resemblance to upper bainite.  相似文献   

11.
Tensile deformation behavior of mechanically stabilized Fe-Mn austenite   总被引:1,自引:0,他引:1  
The tensile deformation behavior of mechanically-stabilized austenite is investigated in Fe-Mn binary alloys. A 30 pct thickness reduction by rolling at 673 K (above the Af temperature) largely suppresses the austenite (γ) to hcp epsilon martensite (ε) transformation in 17Mn and 25Mn steels. However, the deformation behavior of the mechanically stabilized austenite in the two alloys differs significantly. In 25Mn steel, the onset of plastic deformation is due to the stress-induced γ→ ε transformation and results in a positive temperature dependence of the yield strength. The uniform elongation is enhanced by the γ → ε transformation during deformation. In 17Mn steel, bccα′ martensite is deformation-induced along with e and a plateau region similar to Lüders band deformation appears at the beginning of the stress-strain curve. The mechanical stabilization of austenite also suppresses the intergranular fracture of 17Mn steel at low temperatures. M. STRUM, formerly Candidate for Ph.D. at the University of California at Berkeley  相似文献   

12.
13.
A phase-field simulation is performed to study the kinetics of austenite to ferrite (γ → α) transformation in a low-carbon steel during continuous cooling. Emphasis is placed on the influence of nucleation, along with ferrite grain coarsening behind the transformation front, on microstructural evolution. Results show that grain coarsening is significant even before all nucleation has been completed and occurs via two different coarsening mechanisms, grain boundary migration and ferrite grain crystallographic rotation, both of which can be clearly observed occurring as the simulated microstructure evolves. For some grains, sudden growth jumps are predicted by the model—a phenomenon that has been observed before by synchrotron X-ray diffraction. This study quantitatively demonstrates the phenomenon that increasing cooling rate leads to nucleation off initial austenite grain boundaries, which is also verified by studying the morphology of ferrite grains as predicted using different nucleation mode assumptions. A relationship between nucleation site distribution and the nucleation rate is demonstrated by computer simulation.  相似文献   

14.
Two different pearlites after two separate eutectoid reactions were observed in an Fe-19.8 Mn-1.64 Al-1.03 C (wt pct) steel. The steel specimens were processed under solution heat treatment at 1373 K (1100 °C) and received isothermal holding at temperatures from 1073 K to 773 K (800 °C to 500 °C). The constituent phase of the steel is single austenite at temperatures between 1373 K and 1073 K (1100 °C and 800 °C). At temperatures below 1048 K (775 °C), M3C and M23C6 carbides coprecipitate at the austenitic grain boundaries. Two different pearlites appear in the austenite matrix simultaneously at temperatures below 923 K (650 °C). One is lamellae of ferrite and M3C carbide, and the other is lamellae of ferrite and M23C6 carbide. These two pearlites are product phases from two separate eutectoid reactions, i.e., austenite → ferrite + cementite and austenite → ferrite + M23C6. Therefore, the supersaturated austenite has decomposed into two different pearlites, separately.  相似文献   

15.
The crystallography of bainitic ferrite nucleated at austenite grain boundaries was studied in an Fe-9Ni-0.15C (mass pct) alloy. The relationship between bainitic ferrite orientations (variants) and grain boundary characters, i.e., misorientation and boundary orientation, was examined by electron backscatter diffraction analysis in scanning electron microscopy and serial sectioning observation. Bainitic ferrite holds nearly the Kurdjumov–Sachs (K-S) orientation relationship with respect to the austenite grain into which it grows. At the beginning of transformation, the variants of bainitic ferrite are severely restricted by the following two rules, both advantageous in terms of interfacial energy: (1) smaller misorientation from the K-S relationship with respect to the opposite austenite grain and (2) elimination of the larger grain boundary area by the nucleation of bainitic ferrite. As the transformation proceeds, variant selection establishing plastic accommodation of transformation strain to a larger extent becomes important. Those kinds of variant selection result in formation of coarse blocks for small undercooling. This article is based on a presentation given in the symposium entitled “Solid-State Nucleation and Critical Nuclei during First Order Diffusional Phase Transformations,” which occurred October 15–19, 2006 during the MS&T meeting in Cincinnati, Ohio under the auspices of the TMS/ASMI Phase Transformations Committee.
T. Furuhara (Professor)Email:
  相似文献   

16.
Austenite nucleation sites were investigated in near-eutectoid 0.8 mass pct C steel and hypoeutectoid 0.4 mass pct C steel samples with full pearlite and ferrite–pearlite initial structures, respectively. In particular, the prior austenite grain size had been coarsened to compare grain boundaries in the hierarchical pearlite structure, i.e., the low-angle pearlite colony and high-angle block boundaries with ferrite/pearlite interfaces in the austenite nucleation ability. When the full pearlite in 0.8 mass pct C steel underwent reversion at a relatively low temperature, austenite grains preferentially formed at pearlite block boundaries. Consequently, when the full pearlite with the coarse block structure underwent reversion just above the eutectoid temperature, the reversion took a long time due to the low nucleation density. However, austenite grains densely formed at the pearlite colony boundaries as well, as the reversion temperature became sufficiently high. On the other hand, when ferrite–pearlite in the 0.4 mass pct C steel underwent reversion to austenite, the ferrite/pearlite interface acted as a more preferential austenite nucleation site than the pearlite block boundary even in the case of low-temperature reversion. From these results, it can be concluded that the preferential austenite nucleation site in carbon steels is in the following order: ferrite/pearlite interface?>?pearlite block?>?colony boundaries. In addition, orientation analysis results revealed that ferrite restricts the austenite nucleation more strongly than pearlitic ferrite does, which contributes to the preferential nucleation at ferrite/pearlite interfaces. This suggests that austenite grains formed at a ferrite/pearlite interface tend to have an identical orientation even under high-temperature reversion. Therefore, it is thought that the activation of austenite nucleation within pearlite by increasing the reversion temperature may be effective for rapid austenitization and the grain refinement of austenite structure after the completion of reversion in carbon steels.  相似文献   

17.
18.
Common steels of both hypo- and hypereutectoid compositions form pearlitic or martensitic constituents when cooled from austenite temperature in air or in water. Here, we provide evidence that this is not the case in an ultrafine-grained hypereutectoid steel. In this system, when the grain size was reduced to a scale of 2 to 4 μm, normal pearlite could not be obtained when the steel was cooled in air; instead, nanometer-sized granular cementite and ferrite were formed in the eutectoid transformation. When the cooling rate was increased by quenching in saltwater, martensite was no longer formed; instead, fine lamellar pearlite was formed. This research indicates that these abnormal phase transformations were related to the rapid diffusion present in the ultrafine-grained steel, which changed the diffusive transformations.  相似文献   

19.
With the introduction of dual phase steels, it is increasingly becoming important to obtain a thorough understanding of intercritical austenitization phenomena. Quantitative microscopy techniques were used to study the process of intercritical austenitization (740°C) of two Fe-Mn-C steels, one of them being microalloyed with Nb. The two steels showed essentially the same kinetics,viz., three stages of intercritical austenitization: (i) austenite growth into pearlite until complete pearlite dissolution, (ii) growth of austenite into ferrite, and (iii) equilibration of ferrite and austenite. However, compared to data published by other researchers, the maximum amount of austenite, in our case, was reached much faster. Ferrite-ferrite interface processes and preferred nucleation at particles in the ferrite boundaries accelerated the austenite growth. Austenite growth out of pearlite colonies was asymmetric due to the fast ferrite-ferrite interface processes.  相似文献   

20.
Ultrafine ferrite grain sizes were produced in a 0.11C-1.6Mn-0.2Si steel by torsion testing isothermally at 675 °C after air cooling from 1250 °C. The ferrite was observed to form intragranularly beyond a von Mises equivalent tensile strain of approximately 0.7 to 0.8 and the number fraction of intragranular ferrite grains continued to increase as the strain level increased. Ferrite nucleated to form parallel and closely spaced linear arrays or “rafts” of many discrete ultrafine ferrite grains. It is shown that ferrite nucleates during deformation on defects developed within the austenite parallel to the macroscopic shear direction (i.e., dynamic strain-induced transformation). A model austenitic Ni-30Fe alloy was used to study the substructure developed in the austenite under similar test conditions as that used to induce intragranular ferrite in the steel. It is shown that the most prevalent features developed during testing are microbands. It is proposed that high-energy jogged regions surrounding intersecting microbands provide potential sites for ferrite nucleation at lower strains, while at higher strains, the walls of the microbands may also act as nucleation sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号