首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term potentiation (LTP) is a form of synaptic plasticity that can be revealed at numerous hippocampal and neocortical synapses following high-frequency activation of N-methyl--aspartate (NMDA) receptors. However, it was not known whether LTP could be induced at the mossy fiber-granule cell relay of cerebellum. This is a particularly interesting issue because theories of the cerebellum do not consider or even explicitly negate the existence of mossy fiber-granule cell synaptic plasticity. Here we show that high-frequency mossy fiber stimulation paired with granule cell membrane depolarization (-40 mV) leads to LTP of granule cell excitatory postsynaptic currents (EPSCs). Pairing with a relatively hyperpolarized potential (-60 mV) or in the presence of NMDA receptor blockers [5-amino--phosphonovaleric acid (APV) and 7-chloro-kynurenic acid (7-Cl-Kyn)] prevented LTP, suggesting that the induction process involves a voltage-dependent NMDA receptor activation. Metabotropic glutamate receptors were also involved because blocking them with (+)-alpha-methyl-4-carboxyphenyl-glycine (MCPG) prevented potentiation. At the cytoplasmic level, EPSC potentiation required a Ca2+ increase and protein kinase C (PKC) activation. Potentiation was expressed through an increase in both the NMDA and non-NMDA receptor-mediated current and by an NMDA current slowdown, suggesting that complex mechanisms control synaptic efficacy during LTP. LTP at the mossy fiber-granule cell synapse provides the cerebellar network with a large reservoir for memory storage, which may be needed to optimize pattern recognition and, ultimately, cerebellar learning and computation.  相似文献   

2.
N-methyl-D-aspartic acid (NMDA) receptor currents in cultured cells or expression systems are increased by the addition of purified tyrosine kinases. However, there is no direct demonstration of this effect at NMDA receptors in intact synapses of rat brain slices. Transmitters which might be used to activate tyrosine kinases in situ are unlikely to have a sufficiently selective action to allow a clear interpretation of their effects. Therefore, we used a phosphotyrosine-containing decapeptide which can be included in recording electrodes to activate postsynaptic src-family tyrosine kinases. This peptide enhanced NMDA responses in dissociated hippocampal CA1 neurons. These effects were not reproduced by a non-phosphorylated peptide or a scrambled-sequence phosphopeptide. The enhancement of NMDA responses was blocked by a tyrosine kinase inhibitor. In brain slices the phosphopeptide, but not control peptide, increased NMDA receptor-mediated synaptic current indicating that endogenous tyrosine kinase can upregulate the response of NMDA receptors at glutamatergic synapses in the hippocampus.  相似文献   

3.
The avian hippocampus plays a pivotal role in memory required for spatial navigation and food storing. Here we have examined synaptic transmission and plasticity within the hippocampal formation of the domestic chicken using an in vitro slice preparation. With the use of sharp microelectrodes we have shown that excitatory synaptic inputs in this structure are glutamatergic and activate both NMDA- and AMPA-type receptors on the postsynaptic membrane. In response to tetanic stimulation, the EPSP displayed a robust long-term potentiation (LTP) lasting >1 hr. This LTP was unaffected by blockade of NMDA receptors or chelation of postsynaptic calcium. Application of forskolin increased the EPSP and reduced paired-pulse facilitation (PPF), indicating an increase in release probability. In contrast, LTP was not associated with a change in the PPF ratio. Induction of LTP did not occlude the effects of forskolin. Thus, in contrast to NMDA receptor-independent LTP in the mammalian brain, LTP in the chicken hippocampus is not attributable to a change in the probability of transmitter release and does not require activation of adenylyl cyclase. These findings indicate that a novel form of synaptic plasticity might underlie learning in the avian hippocampus.  相似文献   

4.
Long-term potentiation (LTP) of excitatory transmission is an important candidate cellular mechanism for the storage of memories in the mammalian brain. The subcellular phenomena that underlie the persistent increase in synaptic strength, however, are incompletely understood. A potentially powerful method to detect a presynaptic increase in glutamate release is to examine the effect of LTP induction on the rate at which the use-dependent blocker MK-801 attenuates successive N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic signals. This method, however, has given apparently contradictory results when applied in hippocampal CA1. The inconsistency could be explained if NMDA receptors were opened by glutamate not only released from local presynaptic terminals, but also diffusing from synapses on neighboring cells where LTP was not induced. Here we examine the effect of pairing-induced LTP on the MK-801 blocking rate in two afferent inputs to dentate granule cells. LTP in the medial perforant path is associated with a significant increase in the MK-801 blocking rate, implying a presynaptic increase in glutamate release probability. An enhanced MK-801 blocking rate is not seen, however, in the lateral perforant path. This result still could be compatible with a presynaptic contribution to LTP in the lateral perforant path if intersynaptic cross-talk occurred. In support of this hypothesis, we show that NMDA receptors consistently sense more quanta of glutamate than do alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. In the medial perforant path, in contrast, there is no significant difference in the number of quanta mediated by the two receptors. These results support a presynaptic contribution to LTP and imply that differences in intersynaptic cross-talk can complicate the interpretation of experiments designed to detect changes in transmitter release.  相似文献   

5.
A combination of experimental and modeling approaches was used to study cellular-molecular mechanisms underlying the expression of short-term potentiation (STP) and long-term potentiation (LTP) of glutamatergic synaptic transmission in the hippocampal slice. Electrophysiological recordings from dentate granule cells revealed that high-frequency stimulation of perforant path afferents induced a robust STP and LTP of both (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic responses. However, the decay time constant for STP of the AMPA receptor-mediated excitatory postsynaptic potential was approximately 6 min, whereas the decay time constant for STP of the NMDA receptor-mediated excitatory postsynaptic potential was only 1 min. In addition, focal application of agonists during the expression of STP revealed that the magnitude of conductance change elicited by NMDA application was significantly enhanced, whereas the magnitude of conductance change elicited by application of AMPA remained constant. These findings are most consistent with a postsynaptic mechanism of STP and LTP. Different putative mechanisms were evaluated formally using a computational model that included diffusion of glutamate within the synaptic cleft, different kinetic properties of AMPA and NMDA receptor/channels, and geometric relations between presynaptic release sites and postsynaptic receptor/channels. Simulation results revealed that the only hypothesis consistent with experimental data is that STP and LTP reflect a relocation of AMPA receptor/channels in the postsynaptic membrane such that they become more closely "aligned" with presynaptic release sites. The same mechanism cannot account for STP or LTP of NMDA receptor-mediated responses; instead, potentiation of the NMDA receptor subtype is most consistent with an increase in receptor sensitivity or number.  相似文献   

6.
Heparin-binding growth-associated molecule (HB-GAM) is an 18-kDa developmentally regulated protein, which promotes neurite outgrowth, axonal guidance and synaptogenesis through interaction with cell-surface heparan-sulphate proteoglycans. We have studied the effect of HB-GAM on synaptic transmission and long-term potentiation (LTP) in the area CA1 of rat hippocampal slices, where HB-GAM mRNA is expressed in an activity-dependent manner. Injection of recombinant HB-GAM into the dendritic area inhibited tetanus-induced LTP without affecting baseline synaptic responses or the N-methyl-D-aspartate (NMDA)-receptor mediated transmission. HB-GAM did not depotentiate tetanus-induced LTP or prevent heterosynaptic LTP induced by application of tetraethylammonium (TEA), indicating that the effect was limited to early, synapse-specific stages of LTP induction. These results suggest that HB-GAM is involved in the regulation of synaptic plasticity in hippocampus.  相似文献   

7.
Recent work indicates that treatments which block adhesion receptors prevent the stabilization of long term potentiation (LTP). The experiments reported here show that brief stimulation of hippocampal NMDA receptors, a triggering event for LTP induction, results in the extracellular proteolysis of two or more members of the Cell Adhesion Molecule (CAM) family. This effect is rapid, occurs at a consensus serine protease site, and is selective to NMDA receptors. It is also found in vivo after kainic acid induced seizures. Cleavage of adhesive connections could be an early step in the formation of new synaptic configurations.  相似文献   

8.
The role of NMDA and non-NMDA glutamate receptors in long-term potentiation has been intensely investigated, yet recent evidence on the dynamics of synaptic depolarization suggests that the original view should be extended. NMDA receptor-mediated currents, apart from their Ca2+ permeability, show a marked voltage dependence, consisting of current increase and slowdown during membrane depolarization. During high-frequency synaptic transmission, NMDA current increase and slowdown are primed by non-NMDA receptor-dependent depolarization and proceed regeneratively. Thus, NMDA receptors make a decisive contribution to membrane depolarization and spike-firing. From the data obtained at the mossy fibergranule cell synapse of the cerebellum, we propose that the electrogenic role of NMDA receptors is functional to LTP induction. Moreover, during LTP, both NMDA and non-NMDA receptor currents are potentiated, thus establishing a feed-forward mechanism that ultimately enhances spike firing. Thus, NMDA receptors exert an integrated control on signal coding and plasticity. This mechanism may have important implications for information processing at the cerebellar mossy fibergranule cell relay.  相似文献   

9.
The membrane-permeant gas NO is a putative intercellular messenger that has been proposed on the basis of previous in vitro studies to be involved in synaptic plasticity, especially the induction of long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus and cortex. In the present study, the role of NO in synaptic plasticity has been investigated in vivo. In particular, the action of the novel and selective neuronal NO synthase (nNOS) inhibitor 7-nitro-indazole (7-NI) has been investigated on the induction of LTP and depotentiation (DP) of field EPSPs in CA1 of the hippocampus in vivo. Unlike previously studied nonselective NOS inhibitors, 7-NI does not increase arterial blood pressure. In vehicle-injected rats, high-frequency stimulation consisting of a series of trains at 200 Hz induced LTP. However, LTP induction was strongly inhibited in 7-NI (30 mg/kg, i.p.)-treated animals. The inhibitory effect of 7-NI on the induction of LTP was prevented by pretreatment with L-arginine, the substrate amino acid used by NOS. In control animals, low-frequency stimulation consisting of 900 stimuli at 10 Hz induced DP of previously established LTP, whereas in 7-HI-treated animals only a short-term depression was induced. This effect of 7-NI also was prevented by D-arginine. The LTP and DP induced in control animals in this study were NMDA receptor-dependent, the NMDA receptor antagonist 3-(R,S)-2-carboxypiperazin-4-yl-propyl-1- phosphonic acid inhibiting the induction of both forms of synaptic plasticity. The present experiments are the first to demonstrate that an NOS inhibitor blocks the induction of the synaptic component of LTP and DP in vivo and, therefore, these results strengthen evidence that the production of NO is necessary for the induction of LTP and DP.  相似文献   

10.
Efforts to characterize long-term potentiation (LTP) and to identify its substrates have led to the discovery of novel synaptic chemistries, computational algorithms, and, most recently, pharmacologies. Progress has also been made in using LTP to develop a "standard model" of how unusual, but physiologically plausible, levels of afferent activity create lasting changes in the operating characteristics of synapses in the cortical telencephalon. Hypotheses of this type typically distinguish induction, expression, and consolidation stages in the formation of LTP. Induction involves a sequence consisting of theta-type rhythmic activity, suppression of inhibitory currents, intense synaptic depolarization, NMDA receptor activation, and calcium influx into dendritic spines. Calcium-dependent lipases, kinases, and proteases have been implicated in LTP induction. Regarding the last group, it has been recently reported that theta pattern stimulation activates calpain and that translational suppression of the protease blocks potentiation. It is thus likely that proteolysis is readily driven by synaptic activity and contributes to structural reorganization. LTP does not interact with treatments that affect transmitter release, has a markedly differential effect on the currents mediated by colocalized AMPA vs NMDA synaptic receptors, changes the waveform of the synaptic current, modifies the effects of drugs that modulate AMPA receptors, and is sensitive to the subunit composition of those receptors. These results indicate that LTP is expressed by changes in AMPA receptor operations. LTP is accompanied by modifications in the anatomy of synapses and spines, something which accounts for its extreme duration (weeks). As with various types of memory, LTP requires about 30 min to consolidate (become resistant to disruption). Consolidation involves adhesion chemistries and, in particular, activation of integrins, a class of transmembrane receptors that control morphology in numerous cell types. Platelet activating factor and adenosine may contribute to consolidation by regulating the engagement of latent integrins. How consolidation stabilizes LTP expression is a topic of intense investigation but probably involves modifications to one or more of the following: membrane environment of AMPA receptors; access of regulatory proteins (e.g., kinases, proteases) to the receptors; receptor clustering; and space available for receptor insertion. Attempts to enhance LTP have focused on the induction phase and resulted in a class of centrally active drugs ("ampakines") that positively modulate AMPA receptors. These compounds promote LTP in vivo and improve the encoding of variety of memory types in animals. Positive results have also been obtained in preliminary studies with humans.  相似文献   

11.
In the developing visual cortex activity-dependent refinement of synaptic connectivity is thought to involve synaptic plasticity processes analogous to long-term potentiation (LTP). The recently described conversion of so-called silent synapses to functional ones might underlie some forms of LTP. Using whole-cell recording and minimal stimulation procedures in immature pyramidal neurons, we demonstrate here the existence of functionally silent synapses, i.e., glutamatergic synapses that show only NMDA receptor-mediated transmission, in the neonatal rat visual cortex. The incidence of silent synapses strongly decreased during early postnatal development. After pairing presynaptic stimulation with postsynaptic depolarization, silent synapses were converted to functional ones in an LTP-like manner, as indicated by the long-lasting induction of AMPA receptor-mediated synaptic transmission. This conversion was dependent on the activation of NMDA receptors during the pairing protocol. The selective activation of NMDA receptors at silent synapses could be explained presynaptically by assuming a lower glutamate concentration compared with functional ones. However, we found no differences in glutamate concentration-dependent properties of NMDA receptor-mediated PSCs, suggesting that synaptic glutamate concentration is similar in silent and functional synapses. Our results thus support a postsynaptic mechanism underlying silent synapses, i.e., that they do not contain functional AMPA receptors. Synaptic plasticity at silent synapses might be expressed postsynaptically by modification of nonfunctional AMPA receptors or rapid membrane insertion of AMPA receptors. This conversion of silent synapses to functional ones might play a major role in activity-dependent synaptic refinement during development of the visual cortex.  相似文献   

12.
1. The effects of protein kinase inhibitors on N-methyl-D-aspartate (NMDA)-receptor-mediated, voltage-dependent calcium channel (VDCC)-mediated, and 100-Hz long-term potentiation (LTP) were studied in area CA1 of rat hippocampal slices. 2. A 25-Hz tetanus induced a quickly developing potentiation that was blocked by the NMDA antagonist D,L-2-amino-5-phosphonovaleric acid (APV) and was not affected by the L-type VDCC inhibitor nifedipine, suggesting that it was mediated by NMDA receptors (NMDA-LTP). 3. Application of a 200-Hz tetanus in APV induced a slowly developing NMDA-receptor-independent potentiation that was blocked by nifedipine and thus named VDCC-LTP. NMDA- and VDCC-LTP reached comparable magnitudes despite their different induction parameters and developmental kinetics. 4. Bath perfusion of the broad-spectrum serine/threonine kinase inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) blocked NMDA-LTP but not VDCC-LTP, whereas the tyrosine kinase inhibitors genistein and lavendustin A blocked VDCC-LTP but not NMDA-LTP. These results suggest a differential involvement of H-7-sensitive serine/threonine kinases and tyrosine kinases in the two forms of LTP. 5. Tetanization of 200 Hz in control media resulted in a compound potentiation twice as large as NMDA- or VDCC-LTP, implying that the two forms of LTP did not facilitate or reduce each other's expression. The often-used 100-Hz tetanus (1 s twice) induced a potentiation that was comparable in size with the 200-Hz compound LTP. Nifedipine, genistein, and lavendustin A reduced the 100-Hz LTP by approximately 50%, suggesting that this LTP is also a compound potentiation consisting of NMDA- and VDCC-mediated components and their corresponding signal transduction pathways.  相似文献   

13.
NMDA receptors play important roles in synaptic plasticity and neuronal development. The functions of NMDA receptors are modulated by many endogenous substances, such as external pH (pHe), as well as second messenger systems. In the present study, the nerve-muscle cocultures of Xenopus embryos were used to investigate the effects of both external and intracellular pH (pHi) changes on the functional responses of presynaptic NMDA receptors. Spontaneous synaptic currents (SSCs) were recorded from innervated myocyte using whole-cell recordings. Local perfusion of NMDA at synaptic regions increased the SSC frequency via the activation of presynaptic NMDA receptors. A decrease in pHe from 7.6 to 6.6 reduced NMDA responses to 23% of the control, and an increase in pHe from 7.6 to 8.6 potentiated the NMDA responses in increasing SSC frequency. The effect of NMDA on intracellular Ca2+ concentration ([Ca2+]i) was also affected by pHe changes: external acidification inhibited and alkalinization potentiated [Ca2+]i increases induced by NMDA. Intracellular pH changes of single soma were measured by ratio fluorometric method using 2,7-bis (carboxyethyl)-5, 6-carboxyfluorescein (BCECF). Cytosolic acidification was used in which NaCl in Ringer's solution was replaced with weak organic acids. Acetate and propionate but not methylsulfate substitution caused intracellular acidification and potentiated NMDA responses in increasing SSC frequency, intracellular free Ca2+ concentration, and NMDA-induced currents. On the other hand, cytosolic alkalinization with NH4Cl did not significantly affect these NMDA responses. These results suggest that the functions of NMDA receptors are modulated by both pHe and pHi changes, which may occur in some physiological or pathological conditions.  相似文献   

14.
The prelimbic region of medial frontal cortex in the rat receives a direct input from the hippocampus and this functional connection is essential for aspects of spatial memory. Activity-dependent changes in the effectiveness of synaptic transmission in the medial frontal cortex, namely long-term potentiation (LTP) and long-term depression (LTD) can persist for tens of minutes or hours and may be the basis of learning and memory storage. Glutamatergic activation of ionotropic receptors is required to induce both LTP and LTD. We now present evidence of the involvement of metabotropic glutamate receptors in LTP in isolated slices of frontal cortex. Repetitive bursts of stimulation at theta frequencies (TBS) were applied to layer II, and monosynaptic EPSPs were monitored in layer V neurons of the prelimbic area. TBS was found to be more effective at inducing LTP than tetanic stimulation at 100 Hz and produced LTP that lasted >30 min in 8 out of 14 neurons. Tetanic stimulation at 100 Hz in the presence of the N-methyl--aspartate (NMDA)-antagonist 2-amino-5-phosphonopentanoate (AP5) was reported to be a reliable method of inducing LTD in prelimbic cortex (). However we found that this protocol did not facilitate the induction of LTD. The role of metabotropic glutamate receptors (mGluR) in LTP was assessed by using the selective, broad-spectrum antagonist (R, S)-alpha-methyl-4- carboxyphenylglycine (MCPG). This drug significantly reduced the incidence of LTP after TBS to only 1 of 14 neurons (P < 0.02, chi2 test). The pooled responses to TBS in MCPG showed significantly reduced potentiation [(P < 0.02, analysis of variance (ANOVA)]. The broad-spectrum mGluR agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) and the selective group I agonist S-3 hydroxyphenylglycine(S-3HPG) both produced membrane depolarization, an increase in number of spikes evoked by depolarizing current pulses, and a reduction in the afterhyperpolarization. Similar effects were produced by these agonists even when synaptic transmission was blocked by use of the gamma-aminobutyric acid-B (GABAB) receptor agonist, 200 microM baclofen, which suggests that group I mGluRs are present on layer V neurons. We conclude that mGluRs participate in the production of LTP in prelimbic cortex, and that this excitatory effect could be mediated by the postsynaptic group I mGluRs.  相似文献   

15.
1. The effects of an anoxic-aglycemic episode (1-3 min) on the pharmacologically isolated N-methyl-D-aspartate (NMDA)-mediated responses were examined in CA1 pyramidal hippocampal neurons in vitro. 2. An anoxic-aglycemic episode induced a long term potentiation (LTP) of the NMDA receptor-mediated field excitatory post-synoptic potentials (EPSPs). This LTP, referred to as anoxic LTP, was observed in the presence of 1) a normal Mg2+ concentration [+40.1 +/- 5% (mean +/- SE)], 2) a low Mg2+ concentration (+52.2 +/- 10%), or 3) a Mg2+ free (+49 +/- 11%), 1 h after anoxia. 3. Bath application of D-2-amino-5-phosphonovaleric acid (D-APV, 20 microM, 15-21 min) before, during, and after the anoxic-aglycemic episode, which transiently blocked the synaptic NMDA receptor mediated response, prevented the induction of anoxic LTP. 4. The intracellularly recorded NMDA receptor-mediated EPSP was also persistently potentiated by anoxia-aglycemia (+47 +/- 4%). This potentiation was not associated with changes in membrane potential or input resistance. 5. These findings provide the first evidence that an anoxic-aglycemic episode induces an LTP of NMDA receptor-mediated responses. This potentiation may participate in the cascade of events that lead to delayed neuronal death.  相似文献   

16.
1. Temporary suppression of glycolysis by 2-deoxy-D-glucose (2-DG)-long enough to abolish CA1 population spikes (PSs) and reduce field excitatory postsynaptic potentials (EPSPs) by two-thirds-is followed by a sustained rebound of EPSPs and PSs (both up by 70-150%). 2. Post 2-DG long-term potentiation (2-DG-LTP) is prevented by block of N-methyl-D-aspartate (NMDA) receptors (NMDARs). Though 2-DG-LTP is normally expressed by other receptors, in presence of picrotoxin 2-DG causes similar LTP of NMDAR-mediated EPSPs. 3. Stimulation at 1 s-1 fully depotentiates 2-DG-LTP. 4. Unlike tetanic LTP, 2-DG-LTP is not pathway-specific, is not occluded by a preceding tetanic LTP (or vice versa) and is insensitive to block of NO synthesis. 5. Hypoglycemic states may have long-lasting after-effects on cerebral synaptic function.  相似文献   

17.
Perfusion of 100 microM melatonin had no effect on low frequency synaptic transmission, but prevented the induction of tetanically induced long-term potentiation (LTP) when recorded in the dendritic region of the CA1 in rat hippocampal slices. Perfusion of 100 microM melatonin in this preparation had no effect on the multiple population spikes recorded in Mg2+-free medium, and, in grease-gap recordings from the CA1-subiculum slice, 100 microM melatonin had no effect on depolarisations evoked by N-methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). This suggests that melatonin has the ability to prevent the formation of LTP, and that this effect is not mediated by blockade of NMDA receptors.  相似文献   

18.
1. The effects of intracellular injection of Ca2+ chelator 1,2-bis (2-aminophenoxy) ethane N,N,N',N'-tetra-acetic acid (BAPTA, 50 mM) on anoxia-aglycemia-induced long-term potentiation (LTP) were investigated in the CA1 region of hippocampal slices with the use of extra- and intracellular recording techniques. Experiments were performed in artificial cerebrospinal fluid (ACSF) containing 10 microM bicuculline and 10 microM 6-cyano-7-nitroquinoxaline- 2,3-dione (CNQX) to pharmacologically isolate N-methyl-D-aspartate (NMDA)-receptor-mediated responses. NMDA-receptor-mediated excitatory postsynaptic potentials (EPSPs) and field potentials were evoked by stimulation of the Schaffer collateral/commissural pathway in the presence of 0.3 mM MgCl2 and 10 microM glycine to promote NMDA-receptor-mediated responses. Under these conditions, application of 50 microM D-2-amino-phosphono-valerate (D-APV) abolished EPSPs and field potentials. 2. Anoxic-aglycemic (AA) episodes (duration 2-2.5 min) potentiated the initial slope (measured within 3 ms from the onset of the synaptic responses) of EPSPs by 108 +/- 14.3% (mean +/- SE, P = 0.0012, n = 7). We refer to this LTP of NMDA-receptor-mediated synaptic responses as anoxic LTP. 3. Intracellular injection of the Ca2+ chelator BAPTA (with the intracellular recording electrode filled with 50 mM BAPTA in 3 M KCl) prevented anoxic LTP. Thirty to 40 min after the AA episode, in BAPTA-loaded cells, the initial slope of the EPSPs was not significantly changed (+7.12 +/- 5%, P = 0.35, n = 5). In contrast, the initial slope of the field potentials, measured at the same time in the same slices, was persistently increased (+49 +/- 2.8%, P = 0.0022, n = 5). 4. High-frequency tetanic stimulation (100 Hz for 500 ms, 2 times, 30 s apart) of the Schaffer collateral/commissural pathway, applied > 0.5 h after the AA episode, induced an additional significant and persistent increase in the initial slope of the field potential (tetanic LTP, +35.4 +/- 9.8%, P = 0.012, n = 5). In BAPTA-loaded cells, there was no further change in the initial slope of the EPSP (+3.9 +/- 3.4%, P = 0.205, n = 5) after the tetanic stimulation. 5. We also report that AA episodes or tetanic stimulation induced a persistent increase in a late synaptic component that was blocked by 50 microM D-APV. This late component was mediated polysynaptically, because its time to peak decreased with increasing stimulation intensities and it was strongly reduced by high-divalent-cation superfusate (ACSF containing 7 mM Ca2+). This component, which had a delay of approximately 8-30 ms, contaminated mainly the peak amplitude and the decay of the monosynaptic response without affecting its initial slope. Thus the measure of the initial slope takes into account only the early phase of the monosynaptic response. 6. We conclude that 1) a rise in intracellular Ca2+ is necessary to generate anoxic LTP of NMDA-receptor-mediated responses, as is the case for tetanic LTP; and 2) in the presence of bicuculline and low extracellular Mg2+, AA episodes and tetanic stimulations induced a long-lasting enhancement of a polysynaptic component mediated or controlled by NMDA receptors.  相似文献   

19.
Nitric oxide (NO) is a free radical gas that is synthesized from L-arginine by NO synthase (NOS). Activation of NMDA, non-NMDA or metabotropic glutamate receptors causes NO formation through NOS activation. From data obtained in experiments performed by microdialysis together with nitrate assay, we have proposed that NO production in the cerebellum following non-NMDA and metabotropic glutamate receptor activation may be independent of NOS activity, while NMDA receptor-mediated NO production depends on its activity. Glial cells appear to play a role in modulating NO production by regulating L-arginine availability. Activation of NMDA receptors and the increase in intracellular calcium concentration is a trigger for the long-term potentiation (LTP). NO acts as a retrograde messenger in the hippocampal LTP to enhance glutamate release from presynaptic nerve terminal, in which cyclic GMP may be involved. Behavioral studies demonstrate that NO is involved in some forms of learning and memory. Our studies suggest that NMDA/NO/cyclic GMP signaling plays a role in spatial working memory. Further, it is suggested that NO production in the brain is altered by aging. These results support the hypothesis that NO plays a role in mechanism of synaptic plasticity.  相似文献   

20.
Arachidonic acid is suggested to play a role in the expression of long-term potentiation (LTP), a synaptic analog of memory and learning. However, it is unknown whether this free fatty acid is actually released during LTP or not. To address this question, we assayed arachidonic acid with an HPLC system using 9-anthryldiazomethane (ADAM) as a fluorescent probe. High frequency stimulation (tetanic stimulation) to a hippocampal slice from the guinea pig brain caused a huge increase in the release of glutamate from presynaptic terminals and in turn, a gradual increase in the release of arachidonic acid. A similar increase in the release of arachidonic acid was induced by application of glutamate and the increase was inhibited by either the selective AMPA/kainate receptor antagonist, DNQX, or to a lesser extent by the selective NMDA receptor antagonist, APV. These findings suggest that arachidonic acid is produced by activation of ionotropic glutamate receptors involving expression of LTP. Arachidonic acid exerted a long-lasting facilitatory action on synaptic transmission in the CA1 region of rat hippocampal slices and the facilitation occluded the tetanic LTP. Arachidonic acid, thus, appears to be a significant factor for the expression of LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号