首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The boundary integral equation for the axisymmetric Laplace equation is solved by employing modified Galerkin weight functions. The alternative weights smooth out the singularity of the Green's function at the symmetry axis, and restore symmetry to the formulation. As a consequence, special treatment of the axis equations is avoided, and a symmetric‐Galerkin formulation would be possible. For the singular integration, the integrals containing a logarithmic singularity are converted to a non‐singular form and evaluated partially analytically and partially numerically. The modified weight functions, together with a boundary limit definition, also result in a simple algorithm for the post‐processing of the surface gradient. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

2.
A dual integral formulation for the interior problem of the Laplace equation with a smooth boundary is extended to the exterior problem. Two regularized versions are proposed and compared with the interior problem. It is found that an additional free term is present in the second regularized version of the exterior problem. An analytical solution for a benchmark example in ISBE is derived by two methods, conformal mapping and the Poisson integral formula using symbolic software. The potential gradient on the boundary is calculated by using the hypersingular integral equation except on the two singular points where the potential is discontinuous instead of failure in ISBE benchmarks. Based on the matrix relations between the interior and exterior problems, the BEPO2D program for the interior problem can be easily reintegrated. This benchmark example was used to check the validity of the dual integral formulation, and the numerical results match the exact solution well.  相似文献   

3.
In this article, a non‐singular formulation of the boundary integral equation is developed to solve smooth and non‐smooth interior potential problems in two dimensions. The subtracting and adding‐back technique is used to regularize the singularity of Green's function and to simplify the calculation of the normal derivative of Green's function. After that, a global numerical integration is directly applied at the boundary, and those integration points are also taken as collocation points to simplify the algorithm of computation. The result indicates that this simple method gives the convergence speed of order N ?3 in the smooth boundary cases for both Dirichlet and mix‐type problems. For the non‐smooth cases, the convergence speed drops at O(N ?1/2) for the Dirichlet problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
A numerical solution of integral equations typically requires calculation of integrals with singular kernels. The integration of singular terms can be considered either by purely numerical techniques, e.g. Duffy's method, polar co‐ordinate transformation, or by singularity extraction. In the latter method the extracted singular integral is calculated in closed form and the remaining integral is calculated numerically. This method has been well established for linear and constant shape functions. In this paper we extend the method for polynomial shape functions of arbitrary order. We present recursive formulas by which we can extract any number of terms from the singular kernel defined by the fundamental solution of the Helmholtz equation, or its gradient, and integrate the extracted terms times a polynomial shape function in closed form over plane triangles or tetrahedra. The presented formulas generalize the singularity extraction technique for surface and volume integral equation methods with high‐order basis functions. Numerical experiments show that the developed method leads to a more accurate and robust integration scheme, and in many cases also a faster method than, for example, Duffy's transformation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The present paper deals with a boundary element formulation based on the traction elasticity boundary integral equation (potential derivative for Laplace's problem). The hypersingular and strongly singular integrals appearing in the formulation are analytically transformed to yield line and surface integrals which are at most weakly singular. Regularization and analytical transformation of the boundary integrals is done prior to any boundary discretization. The integration process does not require any change of co‐ordinates and the resulting integrals can be numerically evaluated in a simple and efficient way. The formulation presented is completely general and valid for arbitrary shaped open or closed boundaries. Analytical expressions for all the required hypersingular or strongly singular integrals are given in the paper. To fulfil the continuity requirement over the primary density a simple BE discretization strategy is adopted. Continuous elements are used whereas the collocation points are shifted towards the interior of the elements. This paper pretends to contribute to the transformation of hypersingular boundary element formulations as something clear, general and easy to handle similar to in the classical formulation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
The boundary integral representation of second‐order derivatives of the primary function involves second‐order (hypersingular) and third‐order (supersingular) derivatives of the Green's function. By defining these highly singular integrals as a difference of boundary limits, interior minus exterior, the limiting values are shown to exist. With a Galerkin formulation, coincident and edge‐adjacent supersingular integrals are separately divergent, but the sum is finite, while the individual hypersingular integrals are finite. Moreover, the cancellation of the supersingular divergent terms only requires a continuous interpolation of the surface potential, and there is no continuity requirement on the surface flux. The algorithm is efficient, the non‐singular integrals vanish and the singular integrals are computed entirely analytically, and accurate values are obtained for smooth surfaces. However, it is shown that a (continuous) linear interpolation is not appropriate for evaluation at boundary corners. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

7.
A fast and efficient numerical method based on the Gauss-Jacobi quadrature is described that is suitable for solving Fredholm singular integral equations of the second kind that are frequently encountered in fracture and contact mechanics. Here we concentrate on the case when the unknown function is singular at both ends of the interval. Quadrature formulae involve fixed nodal points and provide exact results for polynomials of degree 2n − 1, where n is the number of nodes. Finally, an application of the method to a plane problem involving complete contact is presented.  相似文献   

8.
李亚  张楠 《声学技术》2021,40(2):151-156
平面波垂直入射均匀薄板为一常见的透声问题;如果从振动声辐射角度来讲,这也是一个平面波激励板振动的声辐射问题,两种分析思路均已有经典方法可以采用,计算结果也理应一致.前者计算容易,但后者由于积分中含有奇点所以计算比较复杂.文章首先对有限薄板被激振动和声辐射的已有研究结果进行了回顾,重点处理了矩阵求解和奇点积分问题,给出了...  相似文献   

9.
An introduction to the application of surface integral equation methods to the calculation of eddy current-flaw interactions is presented. Two two-dimensional problems are presented which are solved by the boundary integral equation method. Application of collocation methods reduces the problems to systems of linear algebraic equations. The first problem is that of a closed surface crack in a flat slab with an AC magnetic field parallel to the plane of the crack. The second is that of av-groove crack in the AC field of a pair of parallel wires placed parallel to the vertex of the crack. In both cases, maps of the current densities at the surface are displayed, as well as the impedance changes due to the cracks.  相似文献   

10.
This paper investigates the evaluation of the sensitivity, with respect to tangential perturbations of the singular point, of boundary integrals having either weak or strong singularity. Both scalar potential and elastic problems are considered. A proper definition of the derivative of a strongly singular integral with respect to singular point perturbations should accommodate the concomitant perturbation of the vanishing exclusion neighbourhood involved in the limiting process used in the definition of the integral itself. This is done here by esorting to a shape sensitivity approach, considering a particular class of infinitesimal domain perturbations that ‘move’ individual points, and especially the singular point, but leave the initial domain globally unchanged. This somewhat indirect strategy provides a proper mathematical setting for the analysis. Moreover, the resulting sensitivity expressions apply to arbitrary potential-type integrals with densities only subjected to some regularity requirements at the singular point, and thus are applicable to approximate as well as exact BEM solutions. Quite remarkable is the fact that the analysis is applicable when the singular point is located on an edge and simply continuous elements are used. The hypersingular BIE residual function is found to be equal to the derivative of the strongly singular BIE residual when the same values of the boundary variables are substituted in both SBIE and HBIE formulations, with interesting consequences for some error indicator computation strategies. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
The solutions of the displacement boundary integral equation (BIE) are not uniquely determined in certain types of boundary conditions. Traction boundary integral equations that have unique solutions in these traction and mixed boundary cases are established. For two‐dimensional linear elasticity problems, the divergence‐free property of the traction boundary integral equation is established. By applying Stokes' theorem, unknown tractions or displacements can be reduced to computation of traction integral potential functions at the boundary points. The same is true of the J integral: it is divergence‐free and the evaluation of the J integral can be inverted into the computation of the J integral potential functions at the boundary points of the cracked body. The J integral can be expressed as the linear combination of the tractions and displacements from the traction BIE on the boundary of the cracked body. Numerical integrals are not needed at all. Selected examples are presented to demonstrate the validity of the traction boundary integral and J integral. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of this paper is to show the efficiency of the use of smoothing changes of variable in the numerical treatment of 1D and 2D weakly singular and singular integral equations. The introduction of a smoothing transformation, besides smoothing the solution, allows also the use of a very simple and efficient collocation method based on Chebyshev polynomials of the first kind and their zeros. Further, we propose proper smoothing changes of variable also for the numerical approximation of those collocation matrix elements, which are given by weakly singular, singular or nearly singular integrals. Several numerical tests are given to point out the efficiency of the numerical approach we propose. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The evaluation of volume integrals that arise in boundary integral formulations for non‐homogeneous problems was considered. Using the “Galerkin vector” to represent the Green's function, the volume integral was decomposed into a boundary integral, together with a volume integral wherein the source function was everywhere zero on the boundary. This new volume integral can be evaluated using a regular grid of cells covering the domain, with all cell integrals, including partial cells at the boundary, evaluated by simple linear interpolation of vertex values. For grid vertices that lie close to the boundary, the near‐singular integrals were handled by partial analytic integration. The method employed a Galerkin approximation and was presented in terms of the three‐dimensional Poisson problem. An axisymmetric formulation was also presented, and in this setting, the solution of a nonlinear problem was considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
New complex hypersingular integral equation (CHSIE) is derived for the half-plane containing the inclusions (which can have the different elastic properties), holes, notches and cracks of the arbitrary shape. This equation is obtained by superposition of the equations for each homogeneous region in a half-plane. The last equations follow from the use of complex analogs of Somigliana's displacement and stress identities (SDI and SSI) and Melan's fundamental solution (FS) written in a complex form. The universal numerical algorithm suggested before for the analogous problem for a piece-wise homogeneous plane is extended on case of a half plane. The unknown functions are approximated by complex Lagrange polynomials of the arbitrary degree. The asymptotics for the displacement discontinuities (DD) at the crack tips are taken into account. Only two types of the boundary elements (straight segments and circular arcs) are used to approximate the boundaries. All the integrals involved in CHSIE are evaluated in a closed form. A wide range of elasticity problems for a half-plane with cracks, openings and inclusions are solved numerically.  相似文献   

15.
In this paper, a set of internal stress integral equations is derived for solving thermoelastic problems. A jump term and a strongly singular domain integral associated with the temperature of the material are produced in these equations. The strongly singular domain integral is then regularized using a semi‐analytical technique. To avoid the requirement of discretizing the domain into internal cells, domain integrals included in both displacement and internal stress integral equations are transformed into equivalent boundary integrals using the radial integration method (RIM). Two numerical examples for 2D and 3D, respectively, are presented to verify the derived formulations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A hypersingular boundary integral formulation for calculating two dimensional elastic wave scattering from thin bodies and cracks is described. The boundary integral equation for surface displacement is combined with the hypersingular equation for surface traction. The difficult part in employing the traction equation, the derivation of analytical formulas for the hypersingular integral by means of a limit to the boundary, is easily handled by means of symbolic computation. In addition, the terms containing an integrable logarithmic singularity are treated by a straightforward numerical method, bypassing the use of Taylor series expansions. Example wave scattering calculations for cracks and thin ellipses are presented.  相似文献   

17.
This paper presents the derivation of the non-singular integral representation of stresses in two- and three-dimensional elastostatics. In contrast to the strongly singular and weakly singular integral representations, the numerical computation of the nearly singular integrals is eliminated because all the integrands are made finite in this new formulation even if the internal point approaches the boundary. Thus the method gives accurate numerical results even in that portion of a solid which is very close to a discretized boundary. Three test problems are analysed in which we present a comparison of the accuracies achieved by the numerical computations based on the use of strongly singular, weakly singular and non-singular integral representations of stresses.  相似文献   

18.
Numerical techniques are suggested in this paper, in order to improve the computational efficiency of the spectral boundary integral method, initiated by Clamond & Grue [D. Clamond and J. Grue. A fast method for fully nonlinear water‐wave computations. J. Fluid Mech. 2001; 447 : 337–355] for simulating nonlinear water waves. This method involves dealing with the high order convolutions by using Fourier transform or inverse Fourier transform and evaluating the integrals with weakly singular integrands. A de‐singularity technique is proposed here to help in efficiently evaluating the integrals with weak singularity. An anti‐aliasing technique is developed in this paper to overcome the aliasing problem associated with Fourier transform or inverse Fourier transform with a limited resolution. This paper also presents a technique for determining a critical value of the free surface, under which the integrals can be neglected. Numerical tests are carried out on the numerical techniques and on the improved method equipped with the techniques. The tests will demonstrate that the improved method can significantly accelerate the computation, in particular when waves are strongly nonlinear. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A boundary element (BE) approach based on the traction boundary integral equation for the general solution of three-dimensional (3D) crack problems is presented. The hypersingular and strongly singular integrals appearing in the formulation are analytically transformed to yield line and surface integrals which are at most weakly singular. Regularization and analytical transformation of the boundary integrals is done prior to any boundary discretization. The integration process does not require of any change of coordinates and the resulting integrals can be numerically evaluated in a simple and efficient way. In order to show the generality, simplicity and robustness of the proposed approach, different flat and curved crack problems in infinite and finite domains are analyzed. A simple BE discretization strategy is adopted. The results obtained using rather course meshes are very accurate. The emphasis of this paper is on the effective application of the proposed BE approach and it is pretended to contribute to the transformation of hypersingular boundary element formulation in something as clear, general and easy to handle as the classical formulation but much better suited for fracture mechanics problems.  相似文献   

20.
In this paper, we establish that the Lagrangian-type material differentiation formulas, that allow to express the first-order derivative of a (regular) surface integral with respect to a geometrical domain perturbation, still hold true for the strongly singular and hypersingular surface integrals usually encountered in boundary integral formulations. As a consequence, this work supports previous investigations where shape sensitivities are computed using the so-called direct differentiation approach in connection with singular boundary integral equation formulations. Communicated by T. Cruse, 6 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号