首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pearlitic hardenability of a high-purity Fe-0.8 pct C alloy and zone-refined iron binary alloys containing Mn, Ni, Si, Mo, or Co was studied by means of hot-stage microscopy. The binary alloys were carburized in a gradient furnace to produce eutectoid compositions, thus eliminating proeutectoid phases. A special technique based on hot-stage microscopy was used to study the effect of cooling rate (10°F/min to 25,000°F/min) on the transformation of austenite and provided data for the construction of continuous cooling-transformation diagrams. From these diagrams critical cooling rates were obtained for hardenability calculations. It was found that molybdenum is the most effective element, followed by Si, Ni, Co, and Mn, in suppressing the pearlite transformation,i.e., in increasing the hardenability of the alloys studied. The alloying additions were grouped into two classes according to their effect on hardenability: α-stabilizers (Mo and Si) and γ-stabilizers (Ni, Co, Mn), with the α-stabilizers being the more effective in improving hardenability. This paper is based on a presentation made at a symposium on “Hardenability” held at the Cleveland Meeting of The Metallurgical Society of AIME, October 17, 1972, under the sponsorship of the IMD Heat Treatment Committee.  相似文献   

2.
“Clean” 3.5NiCrMoV steels with limited contents in trace elements (P, Sn, As, Sb) are commonly provided for manufacturing big rotor shafts. The possible increase in temperature in future steam turbines has promoted the development of “superclean” steels characterized by an extra drastic decrease of manganese and silicon contents. Their higher cost in comparison to “clean” steels leads to concern above which temperature they must be considered as mandatory for resisting aging embrittlement in operation. 3.5NiCrMoV “clean” steel samples (Mn = 0.30 pct; Si = 0.10 pct) were aged at 300 °C, 350 °C, and 400 °C for 10,000 hours up to 30,000 hours. No embrittlement results from aging at 300 °C and 350 °C, but holding at 400 °C is highly detrimental. Auger spectroscopy confirms that, when aging at 400 °C, phosphorus is the main embrittling trace element. It is suggested that grain boundary embrittlement is associated with the building of a layer that contains, on the one hand, Ni and P and, on the other hand, Mo and Cr. Head of the Testing and Head of the Testing and Head of the Testing and  相似文献   

3.
A new hardenability test for shallow-hardening steels was developed which allows the precise measurement of the hardenability of “pure” Fe-C alloys: The quantitative hardenability effect of variation in the austenite grain size of carbon steels was found to vary linearly with d γ t-1/2 , where dγ is the mean austenite grain diameter. Using high-purity steels, the quantitative hardenability effects of C and the common alloying elements Mn, P, S, Si, Cu, Ni, Cr, Mo, V, Ti, and Zr were determined. From these data, the hardenability of carbon steels, with and without residual elements, can be estimated from chemical composition and grain size by a new and relatively simple method. This paper is based on a presentation made at a symposium on “Hardenability” held at the Cleveland Meeting of The Metallurgical Society of AIME, October 17, 1972, under the sponsorship of the IMD Heat Treatment Committee.  相似文献   

4.
Separate 200, 020, and 002 X-ray peaks were recorded for 0.0, 0.4, and 0.8 wt pct carbon (18 pct Ni) martensites after tempering between 25 and 500°C. The carbon bearing martensites studied here have been tempered initially enough to eliminate the “high tetragonality” 002 peak usually recorded for as-quenched martensite and the present results apply to tempered martensite only. The peak maximum is taken to determine the lattice parameter and the peak shape is recorded. At all carbon levels and after all tempering treatments, the “crd parameter is larger than or equal to the “a” or “b”. The relative enlargement is very small (0.08 pct) for the lowest carbon level and for any carbon level after severe tempering (500°C for 15 min). For the two higher carbon alloys tempered at temperatures below 400°C (for 15 min) the “c” parameter is significantly larger than the “a” and “b” and for the 0.4 wt pct C alloy the “b” is significantly smaller than the“a” whereas in the 0.8 pct C alloy the “b” is slightly larger than the “a”. Within experimental error the mean volume of the unit cell does not change during the tempering studied here and is nearly unaffected by the initial carbon content. This indicates that little (at most 0.1 wt pct) carbon is dissolved in tempered martensite. In the low carbon alloy the peaks are symmetric and sharpen symmetrically during tempering. In the higher carbon alloys the peaks are nearly symmetric and sharp after severe tempering. After less severe tempering the 002 peak is asymmetrically broadened toward lower9 values (higher lattice parameters) whereas the 200 and 020 peaks are asymmetrically broadened toward higher 0 values corresponding to lower lattice parameters. This collection of results is tentatively interpreted as being due to strains in martensite due to transformation induced substructure and precipitated carbides.  相似文献   

5.
A nickel base weld filler metal alloy with nominal composition of 67 pct Ni, 20 pct Cr, 3 pct Mn, 3 pct Fe, and 2.5 pct Nb (Cb) is used to make austenitic-ferritic dissimilar metal joints. Tensile properties were determined for this alloy over the range 25 to 732°C at strain-rates of 3×10−6 and 3×10−4/s. Above about 450°C, both the yield strength and the ultimate tensile strength in the low strain-rate tests showed significant increases over the strengths at the higher strain-rate. The enhanced values for the yield strength persisted to the highest test temperature (732°C), whereas the ultimate tensile strength for the low strain-rate fell below the curve for the higher strain-rate at about 600°C. Above 600°C, the ultimate tensile strength dropped off rapidly and at 677°C approached the yield strength (i.e., the uniform elongation dropped to less than 1 pct). The strain-rate effects have been attributed to “K-state” formation, an effect that investigators have attributed to short range order in other Ni−Cr base alloys.  相似文献   

6.
The relation between austenite stability and the tensile properties, as affected by testing temperature and processing, was studied for a series of alloys of increasing compositional complexity, viz., the Fe-Ni, Fe-Ni-C, and Fe-Ni-Cr-Mn-C systems. The “stress” and “strain induced” modes of transformation to martensite differed significantly in their influence on the shape of the stress-strain curve. Under certain testing conditions, unusually low yield strengths and high work hardening rates were observed in some of these alloys. Maxima in yield strengths were observed for all austenitic alloys containing carbon that were processed at deformation temperatures between 200° and 300°C. Evidence gleaned from electron microscopy and magnetic and mechanical testing suggested that the maxima were due to the formation of carbon atmospheres on dislocations during processing. The influence of austenite stability on the mechanical properties of steels, varied by systematic changes in test temperature (22° to -196°C), composition (8 pct, 12 pct, 16 pct, and 21 pct Ni) and deformation temperature (25° to 450°C), was evaluated quantitatively. An erratum to this article is available at .  相似文献   

7.
Solid state SiC/Ni alloy reaction   总被引:8,自引:0,他引:8  
The solid state reaction between silicon carbide and a model superalloy consisting of 70 at. pct Ni, 20 at. pct Cr, and 10 at. pct Al was studied between 700 °C and 1150 °C for times ranging from “0” hours to 330 hours. Reaction couples consisting of SiC/Ni, SiC/Cr, and SiC/NiCr were also studied. The reactions were carried out in air with the materials, in the shape of discs, maintained in contact under a pressure of 7 MPa. A reaction was detected with SiC and the model alloy at all temperatures studied, and the reaction was diffusion controlled with an activation energy of 184 kJ/mole. In the ceramic the reaction was dominated by the diffusion of Ni into the ceramic forming a banded structure consisting of alternating layers of δ-Ni2Si and a two phase mixture of graphite and δ. On the metal side, the reaction was very dependent on the presence of alloying elements, with pure Ni reacting to the greatest extent, followed by the binary NiCr alloy, and finally by NiCrAl. The growth and presence of the phases detected in these reactions is consistent with phase equilibria concepts.  相似文献   

8.
A careful experimental study of the phase transformations which occur in annealed β phase Ti-Nb alloys during quenching has been completed. The compctition of the α″ and ω phases to form in alloys of 20 to 70 at. pct Nb was investigated as a function of quench rate and alloy composition. Particular attention was paid to the interstitial content and chemical homogeneity of the alloys. The martensitic α″ phase was found only in 20 and 25 at. pct Nb alloys, and then only using fast water quenches of ~300 °C/sec. Under slower quench conditions,e.g., ~0.3 to 3 °C/sec, ω phase precipitates were found in these alloys and in 30 and 35 at. pct Nb alloys. Evidence of “diffuse” ω phase precipitation was observed in alloys up to 50 at. pct Nb. Only alloys of 60 and 70 at. pct Nb were found to retain the single phaseβ structure upon quenching. These results constitute the first part of a study of the stable and metastable equilibria of the Ti-Nb alloy system. Formerly a Graduate Student in the Materials Science Program at the University of Wisconsin-Madison.  相似文献   

9.
Some design guidelines for improving strength-toughness combinations in medium car-bon structural steels are critically reviewed. From this, quaternary alloy development based on Fe/Cr/C steels with Mn or Ni additions for improved properties is described. Transmission electron microscopy and X-ray analysis reveal increasing amounts of retained austenite in these alloys with Mn content up to 2 wt pct and Ni additions at 5 wt pct after quenching from 1100°C. A corresponding improvement in toughness properties is also found. Grain refining results in a further increase in the amount of retained austenite. In addition, the excellent combinations of strength and toughness in these quaternary alloys are attributed to the production of dislocated lath martensite from a homogeneous austenite phase free from undissolved alloy carbides. The question of thermal instability of retained austenite following tempering is considered in detail and it is shown that the decomposition of retained austenite is closely related to the ease of nucleation and growth of cementite. Thus, graphitizing alloying elements such as Ni are beneficial in postponing the decomposition of retained austenite. Formerly with the Lawrence Berkeley Laboratory, Berkeley, CA This paper is based on a presentation made at a symposium on “Precipitation Processes in Structural Steels” held at the annual meeting of the AIME, Denver, Colorado, February 27 to 28, 1978, under the sponsorship of the Ferrous Metal-lurgy Committee of The Metallurgical Society of AIME.  相似文献   

10.
Analytical expressions are presented which allow the calculation of an ideal critical diameter (D1) and a Jominy end-quench hardenability curve for a steel from its chemical composition and prior austenite grain size. The expressions are based on alloy hardenability factors in the literature and on the previously unpublished “hardness drop” method of determiningD, from end-quench hardenability curves. Relationships defining Jominy curve shape as a function ofD I are developed. These differ from similar relationships previously published by recognizing that, for steels of low to medium hardenability, the microstructure contains significant amounts of non-martensitic transformation products even at the prescribed first position of hardness measurement on the end-quench hardenability bar, 1.59 mm (1/16 inch) from the quenched end. The analytical expressions presented are particularly well suited for the calculation ofD I and end-quench hardenability curves for boron-free carburizing steels containing 0.15 to 0.25 pct carbon.  相似文献   

11.
The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy   总被引:3,自引:0,他引:3  
The effect of quenching condition on the mechanical properties of an A356 (Al-7 wt pct Si-0.4 wt pct Mg) casting alloy has been studied using a combination of mechanical testing, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). As the quench rate decreases from 250 °C/s to 0.5 °C/s, the ultimate tensile strength (UTS) and yield strength decrease by approximately 27 and 33 pct, respectively. The ductility also decreases with decreasing quench rate. It appears that with the peak-aged condition, both the UTS and yield strength are a logarithmic function of the quench rate,i.e., UTS orσ y =A logR +B. The termA is a measure of quench sensitivity. For both UTS and yield strength of the peak-aged A356 alloy,A is approximately 32 to 33 MPa/log (°C/s). The peak-aged A356 alloy is more quench sensitive than the aluminum alloy 6063. For 6063,A is approximately 10 MPa/log (°C/s). The higher quench sensitivity of A356 is probably due to the high level of excess Si. A lower quench rate results in a lower level of solute supersaturation in the α-Al matrix and a decreased amount of excess Si in the matrix after quenching. Both of these mechanisms play important roles in causing the decrease in the strength of the peak-aged A356 with decreasing the quench rate.  相似文献   

12.
Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C-X alloys   总被引:1,自引:0,他引:1  
Parabolic rate constants for the thickening (α) and lengthening (β) kinetics of grain boundary allotriomorphs of proeutectoid ferrite have been measured as a function of isothermal transformation temperature in several Fe-C-X’ alloys whereX = Si, Ni, Mn, and Cr. These constants have been corrected approximately for the growth inhibition produced by facets on the allotriomorphs. The corrected α values are compared with those calculated on the basis of three models: equilibrium at α:γ boundaries with partition ofX, local equilibrium with “pile-up” ofX rather than bulk partition, and paraequilibrium. Values calculated from both the paraequilibrium and the “pile-up” models were in order of magnitude or better agreement with the corrected experimental α’s. Similar levels of agreement were obtained for the equilibrium model in the Si and Cr alloys and also in one Ni alloy at lower reaction temperatures. However, an estimate of the maximum possible diffusion distance of alloying element into austenite during growth supported only the paraequilibrium model under nearly all conditions investigated. Even for this model, however, measured rate constants are significantly less than those calculated for Fe-C-Mn and Fe-C-Cr and greater for Fe-C-Si and the higher Ni, Fe-C-Ni alloy. The Mn and Cr discrepancies seem best explained at present by a solute drag-like effect; an accompanying paper indicates that interphase boundary precipitation of carbides is involved in the Si and Ni alloys, though an inverse solute drag-like effect may also be operative. Formerly graduate student, Department of Metallurgical Engineering, Michigan Technological University. Formerly Professor at Michigan Technological University.  相似文献   

13.
The segregation and precipitation of boron have been studied in thermomechanically processed 0.2C-0.6Mn-0.5Mo steels containing nominally 0, 10, 20, 50, and 100 ppm B. These steels were hot-rolled in the laboratory (in simulation of production multipass rolling), and their transformation behavior during subsequent water quenching was examined for different finish-rolling temperatures (980 °C and 870 °C) and quenching temperatures (730 °C to 950 °C). The results showed that in general, a “free” boron content of 10 to 20 ppm (which is similar to the levels used for conventional quenched-and-tempered steels) will provide a boron hardenability increment similar to that for conventional quenched-and-tempered steels. The delay time prior to quenching (over the range of 10 to 100 seconds) did not have a significant effect on hardenability except in the steels containing 50 or more ppm B. In these higher B steels, precipitation of borocarbides occurred along austenite grain boundaries with a resultant decrease in hardenability.  相似文献   

14.
Substitutional alloying effects on reversion kinetics from pearlite structure at 1073 K (800 °C) in an Fe-0.6 mass pct C binary alloy and Fe-0.6C-1 or 2 mass pct M (M = Mn, Si, Cr) ternary alloys were studied. Reverse transformation in the Fe-0.6C binary alloy at 1073 K (800 °C) was finished after holding for approximately 5.5 seconds. The reversion kinetics was accelerated slightly by the addition of Mn but retarded by the addition of Si or Cr. The difference of acceleration effects by the addition of the 1 and 2 mass pct Mn is small, whereas the retardation effect becomes more significant by increasing the amount of addition of Si or Cr. It is clarified from the thermodynamic viewpoint of carbon diffusion that austenite can grow without partitioning of Mn or Si in the Mn- or Si-added alloys. On the one hand, austenite growth is controlled by the carbon diffusion, whereas the addition of them affects carbon activity gradient, resulting in changes in reversion kinetics. On the other hand, thermodynamic calculation implies that the long-range diffusion of Cr is necessary for austenite growth in the Cr-added alloys. It is proposed that austenite growth from pearlite in the Cr-added alloys is controlled by the diffusion of Cr along austenite/pearlite interface.  相似文献   

15.
In the “as rolled” condition an Fe-6 Ni-5 Mn maraging type alloy was found to be brittle exhibiting intergranular fractures. The addition of 2.5 pct Mo and 5.0 pct Mo increased the impact toughness of the “as rolled” material and changed the mode of brittle fracture to transgranular cleavage. The addition of 9 pct Co embrittled the alloy. On aging Mo and Co raised the peak hardness of the base Fe-6 Ni-5 Mn alloy, however, aging led to rapid embrittlement. The base alloy and an alloy containing 2.5 pct Mo showed brittle intergranular fractures on aging. The addition of 5 pct Mo gave rise to brittle transgranular cleavage fractures on aging at 450°C, but at temperatures less than 450°C there was always up to 20 pct intergranular fracture present in brittle fractures. At temperatures greater than 475°C brittle intergranular failure occurred in the 5 pct Mo alloy due to a grain boundary film of M6C and Fe2Mo. This paper is based upon a thesis submitted by D. R. Squires in partial fulfilment for a higher degree of CNAA at Sheffield Polytechnic.  相似文献   

16.
Phase relations in the system Cu-Ni-0 were studied atPo 2 = 0.21 atm using DTA and quenching techniques. Results were expressed in the form of a NiO-CuO “binary” in which a eutectic occurs at 1090°C and 6 mol pct NiO. The activities of CuO in (Ni,Cu)O solid solutions were determined at 1024°C by establishing the oxygen partial pressures at which Cu2O precipitates from members of this solution series.  相似文献   

17.
A low-carbon balloy steel with relatively high Mn and Si concentrations (0.04 wt pct C-3 wt pct Mn-1.9 wt pct Si) has been used to explore the effects of alloy chemistry and austenite grain size on ferrite growth. Even at high levels of supersaturation, the volume fraction of ferrite is found to increase slowly relative to the relaxation time for carbon diffusion. A series of scanning transmission electron microscopy (STEM) analyses for Mn indicates that initial unpartitioned ferrite growth is replaced by partitioned growth, accompanied by a dramatic drop in growth rate, and a persistent level of residual supersaturation in the remaining austenite. The results are interpreted in terms of a transition from an initial paraequilibrium interfacial condition to partitioned ferrite growth. This article is based on a presentation made in the “Hillert Symposium on Thermodynamics & Kinetics of Migrating Interfaces in Steels and Other Complex Alloys,” December 2–3, 2004, organized by The Royal Institute of Technology in Stockholm, Sweden.  相似文献   

18.
A new Al-Li alloy containing 2.3 wt pct Li, 6.5 wt pct Mn, and 0.65 wt pet Zr, for high-temperature applications, has been processed by a rapid solidification (RS) technique (as powders by inert gas atomization) and then thermomechanically treated by hot isostatic pressing (hipping) and hot extrusion. As-received and thermomechanically treated powders (of various size fractions) were characterized by X-ray diffraction and scanning and transmission electron microscopy (SEM and TEM, respectively). Phase analyses in the as-processed materials revealed the presence of two Mn phases (Al4Mn and Al6Mn), one Zr phase (Al3Zr), two Li phases (the stable AlLi and the metastable Al3Li), and the αAl solid solution with high excess in Mn solubility (up to close the nominal composition in the as-atomized powders). Extruded pieces were solutionized at 370 °C and 530 °C for various soaking times (2 to 24 hours). A variety of aging treatments was practiced to check for the optimal (for tensile properties) aging procedure, which was found to be the following: solutioning at 370 °C for 2 hours and water quenching + 1 pct mechanical stretching + one step aging at 120 °C for 3 hours. The mechanical properties, at room and elevated temperatures, of the “hipped” and hot extruded powders are compared following the optimal solutioning and aging treatments. The results indicate that Mn is indeed a favorable alloying element for rapidly solidified Al-Li alloys to retain about 85 to 95 pct of the room-temperature tensile properties even at 250 °C, though room-temperature strength is not satisfactory in itself. However, specific moduli are by 20 to 25 pet higher than those of the 2024 series duralumin-type alloys. Ductilities at room temperatures are in the low 1 to 2.5 pct range and show no improvement over other Al-Li alloys.  相似文献   

19.
In excess of 30 vol. pct austenite can be retained in 0.3C-4.0Mn steels subjected to a dual stabilization heat treatment (DSHT) schedule—a five stage precisely controlled cooling schedule that is a variant of the quench and partition process. The temperature of the second quench (stage III) in the DSHT process plays an essential role in the retained austenite contents produced at carbon-partitioning temperatures of 723 K or 748 K (450° C or 475 °C) (stage IV). A thermodynamic model successfully predicted the retained austenite contents in heat-treated steels, particularly for a completely austenitized material. The microstructure and mechanical behavior of two heat-treated steels with similar levels of retained austenite (~30 vol. pct) were studied. Optimum properties—tensile strengths up to 1650 MPa and ~20 pct total elongation—were observed in a steel containing 0.3C-4.0Mn-2.1Si, 1.5 Al, and 0.5 Cr.  相似文献   

20.
Experimental laboratory methods have been developed that enable phase-equilibria studies to be carried out on slags in the system Ca-Cu-Fe-O in equilibrium with metallic copper. These techniques involve equilibration at temperature, rapid quenching, and chemical analysis of the phases using electron-probe X-ray microanalysis (EPMA). Equilibration experiments have been carried out in the temperature range of 1150 °C to 1250 °C (1423 to 1523 K) and in the composition range of 4 to 80 wt pct “Cu2O,” 0 to 25 wt pct CaO, and 20 to 75 wt pct “Fe2O3” in equilibrium with metallic copper. Liquidus and solidus data are reported for the primary-phase fields of spinel (magnetite) and dicalcium ferrite. The resulting data have been used to construct liquidus isotherms of the CaO-“Cu2O”-“Fe2O3” system at metallic copper saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号