首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
花椒籽油不饱和脂肪酸β-环糊精包合物制备研究   总被引:1,自引:1,他引:0  
为增加花椒籽油不饱和脂肪酸的氧化稳定性,采用β-环糊精对花椒籽油不饱和脂肪酸进行包合研究.结果表明:β-环糊精包合物制备的最适反应条件为β-CD:PUFA=6:1、水:β-CD=4.4:1,此条件下包合28 min,包合率达47.3%.采用真空冷冻干燥法干燥的包合物色泽、流散性最好,芯材不饱和脂肪酸氧化程度最低,用β-环糊精包合后,不饱和脂肪酸氧化稳定性得到明显提高.  相似文献   

2.
研究野坝子挥发油β-环糊精包合物的最佳制备工艺。采用饱和水溶液法制备野坝子挥发油β-环糊精包合物。以包合物的收率和包合物含油率为评价指标,采用正交设计法优选野坝子挥发油β-环糊精包合物的制备工艺条件,并使用薄层色谱法和紫外分光光度法对包合效果进行评价。结果表明,正交实验得到的最佳工艺条件:挥发油与β-环糊精的配比为1∶6 mL/g、包合温度为60℃、包合时间1.5 h,在此工艺条件下,β-环糊精包合物的收率和含油率均较高,可以推广应用。  相似文献   

3.
研究匙羹藤总皂甙与β-环糊精包合物的制备工艺.采用饱和水溶液法,在单因素试验的基础上,通过正交试验,考察投料比、包合温度、包合时间对包合物收率和包合率的影响.最佳包合条件为:β-环糊精与匙羹藤总皂甙比例1:1,包合温度50℃,包合时间3 h.该制备工艺稳定,可用于匙羹藤总皂甙-β-环糊精包合物的制备.  相似文献   

4.
为了优化月见草油-β-环糊精包合物的制备工艺。采用饱和水溶液法制备月见草油β-环糊精包合物,以β-环糊精与月见草油的投料比、包合温度和包合时间为考察因素,月见草油包合物包合率和包合物得率的综合评分为指标,通过星点设计-响应面法优化制备工艺,经红外分析和差示扫描量热进行包合物形成的验证。最佳包合工艺为β-环糊精与月见草油投料比为5∶1 m L/g、包合温度55℃、包合时间1.8 h,在此最佳工艺条件下,月见草油-β-环糊精包合物的包合率和包合物得率分别为81.56%和92.28%。实验证明月见草油可与β-环糊精形成稳定的包合物,为月见草油的应用开发提供了理论基础。  相似文献   

5.
为提高番茄红素的稳定性,采用超声法制备番茄红素β-环糊精包合物,并对其稳定性进行研究。采用L9(34)正交试验对超声法制备番茄红素β-环糊精包合物工艺进行优选,以包合率为指标,考察超声功率、超声时间、番茄红素与β-环糊精物质的量的比对番茄红素包合的影响。结果得到包合的最佳工艺条件为超声功率250W、超声时间25min、番茄红素与β-环糊精物质的量的比1:150,番茄红素的包合率可达73.6%,包合的番茄红素在60d内保留率达到92.2%。超声法制备番茄红素β-环糊精包合物是一种适宜的提高番茄红素的稳定性的方法。  相似文献   

6.
对螺旋藻油与β-环糊精包合物的制备工艺进行了研究,优化了包合条件,最佳包合条件为:β-环糊精与螺旋藻油的比例为2.5∶1,包合温度为50℃,包合时间为5h,包合率为76.1%~77.6%。仪器分析结果表明,螺旋藻油与β-环糊精的包合为物理包合,包合前后螺旋藻油的成分组成及相对百分含量未发生改变,包合后螺旋藻油的水溶性明显改善,可用于水溶性环境,大大拓宽了其应用范围,包合后螺旋藻油稳定性也得到显著提高,改善了其加工条件。  相似文献   

7.
目的优选确定陈皮挥发油β-环糊精最佳包合工艺。方法以挥发油利用率、包合物收率为指标,用研磨法制备包合物,采用正交试验考察挥发油量与β-环糊精比例、溶媒含醇量、包合时间对包合效果的影响。结果优选的最佳包合条件如下,挥发油量:β-环糊精1:10、溶媒含醇量60%、包合时间1 h。结论验证试验表明优选的陈皮挥发油β-环糊精包合工艺合理、可行。  相似文献   

8.
为采用超声法制备生姜精油β-环糊精包合物,以生姜精油包合率及包合物产率的综合值为指标,通过正交实验优化包合条件,确定的最佳工艺条件为:超声功率为200W、m(生姜精油)∶(β-环糊精)=1∶5,超声时间为30min,温度30℃。在该条件下包合,包合率为74.1%,包合物产率为65.8%。该法简单可行,是一种制备姜精油β-环糊精包合物的较好方法。  相似文献   

9.
通过Box-Benhnken响应面方法优化栀子黄色素与β环糊精包合物的制备工艺,确定最佳包合条件为:饱和β-环糊精溶液10 m L,栀子黄色素335 mg,温度50.0℃,搅拌时间1.0 h。在此条件下包合率为68.44%。采用红外光谱及扫描电镜对栀子黄色素和β-环糊精及其包合物的结构进行分析,结果表明:包合物的结构与主客体的结构明显不同,包合后形成新的固体相。在黑暗、室外曝光、室内光照及不同的p H值条件下,比较栀子黄色素-β-环糊精包合物及未被包合栀子黄色素的稳定性,结果包合物的光稳定性高于未被包合的栀子黄色素的稳定性。两者具有相近的酸碱稳定性,并且碱性条件下的稳定性远高于酸性条件下的稳定性。  相似文献   

10.
本研究以优化千斤拔黄酮-β-环糊精包合工艺,并验证包合物的增溶作用为目的。在预实验基础上,利用红外分光光度法验证了千斤拔黄酮-β-环糊精包合物的形成,然后采用饱和水溶液法,在单因素实验基础上,以包合物得率和包合率总评归一值为考察指标,采用响应面法优化千斤拔黄酮-β-环糊精包合物的制备工艺。预实验结果表明千斤拔黄酮-β-环糊精包合物已经形成,响应面实验显示包合物的最佳制备工艺条件为:β环糊精与千斤拔黄酮投料比(质量比)5.5∶1、包合温度43℃、包合时间3.8 h,在此最佳工艺条件下,千斤拔黄酮-β-环糊精包合物的包合率为44.68%,包合物得率为73.12%,溶解度测定结果表明将千斤拔黄酮利用β环糊精包合后,可使千斤拔黄酮在水中溶解度由(22.86±0.62)mg提高到(106.58±0.95)mg。千斤拔黄酮与β环糊精可形成稳定的包合物,包合物的形成可使千斤拔黄酮在水中的溶解度显著提高,为千斤拔黄酮口服制剂的开发提供了理论依据。  相似文献   

11.
核桃油与棕榈硬脂复配体系在涂抹脂基料油中的应用   总被引:1,自引:0,他引:1  
对棕榈硬脂与核桃油复配体系的相容性及结晶性质变化进行探究,考察复配体系在涂抹脂基料油中的应用。结果表明,当核桃油含量达到20%以上时,复配体系的固体脂肪含量(Solid Fat Content,SFC)变化趋势符合涂抹脂的最佳SFC曲线特征,适合用作涂抹脂基料油;在温度高于33.3℃时,核桃油与棕榈硬脂在复配比例(1∶9、2∶8、3∶7、4∶6)下可以完全相容;在核桃油比例达到3∶7以上时,复配体系的屈服值符合涂抹脂的最佳屈服值范围;在温度低于30℃时,棕榈硬脂及复配体系具有较强的晶体网络结构,能在运输和贮藏过程中维持稳定的形态,在接近体温时也能快速熔化,产生涂抹脂类似的口感,复配体系中晶体以β′晶型为主。该结果为棕榈硬脂及核桃油复配体系在涂抹脂中的应用奠定基础。  相似文献   

12.
为提高核桃的综合利用率,优化了水酶法联产核桃油和核桃多肽的工艺条件,并分析了油脂的脂肪酸组成。通过比较4种不同的蛋白酶与纤维素酶复配对核桃提油率和多肽产量的影响,确定最佳酶组合;在此基础上,通过单因素和L18(35)正交试验研究了pH、酶解温度、酶解时间、料液比和加酶量对核桃提油率以及多肽产量的影响,得出最佳工艺条件;利用气相色谱技术分析了核桃油的脂肪酸组成。结果表明,木瓜蛋白酶与纤维素酶复配(2:1,w/w)为最佳酶组合;水酶法制备核桃油和核桃多肽的最佳联产工艺条件为:加酶量3.0%,料液比1:5(g/mL),pH5,时间3.0 h,温度60 ℃;在此工艺条件下,核桃提油率可达53.37%,多肽产量为4.01 mg/g。气相色谱测定结果表明,核桃油中共检测出5种脂肪酸,分别为亚油酸(62.26%)、油酸(18.64%)、α-亚麻酸(10.57%)、棕榈酸(6.00%)、硬脂酸(2.53%);核桃油以不饱和脂肪酸为主,其总含量高达91.47%,其中多不饱和脂肪酸含量为72.83%,单不饱和脂肪酸含量为18.64%。该工艺可为水酶法联产核桃油和核桃多肽的产业化应用提供参考。  相似文献   

13.
在水代法的基础上,研究酶种类、酶用量、酶解搅油时间、酶解搅油温度及超声处理对核桃油提取率的影响。研究表明:加酶和超声处理可提高传统水代法的油提取率。木瓜蛋白酶对核桃油提取率的作用优于中性蛋白酶和碱性蛋白酶。适宜的酶解超声水代法提取核桃油工艺条件为核桃仁经研磨,60℃料水比1:3兑浆,50000U/g木瓜蛋白酶用量2.0%,搅油时间3.5h,此时出油率可达到79.07%。提取的核桃油酸价1.23mg/g,过氧化值0.0042mg/kg。  相似文献   

14.
山核桃油微胶囊技术研究   总被引:1,自引:0,他引:1  
通过复凝聚法和分子包埋法对山核桃油微胶囊的制备进行了研究。在复凝聚法中,最佳条件是:海藻酸钠质量分数为2.5%,壳聚糖质量分数为2.0%,氯化钙质量分数为3.0%,壁材:心材比例为1:2,pH为5.0。在此条件下微胶囊的包埋率为97.74%。在分子包埋法中,最佳条件是:超声时间20min,壁材与心材比例为1:8,超声温度为40℃,超声功率为320W。在此条件下微胶囊的效率为66.01%。  相似文献   

15.
水剂法同时提取核桃仁油脂及蛋白质研究   总被引:2,自引:1,他引:1  
研究了水剂法提取核桃油及蛋白质的工艺中料液比、兑水pH、浸提温度、浸提时间对油脂提取率的影响。结果表明:最佳工艺条件为,料液比(g:mL)1∶3,兑水pH5.5,浸提温度60℃,浸提时间8h。该工艺条件下油脂得率为19.52%,蛋白质得率为10.81%,并利用冷冻干燥法得到蛋白粉。  相似文献   

16.
针对核桃仁特有的营养组成,采用复合酶法处理核桃浆,通过离心去除部分核桃油,并对核桃乳饮料工艺条件进行探讨,确定生产流程及配方。结果表明,酶解条件为料液比1:0.35、果胶酶与纤维素酶以10:1进行复配,即果胶酶450U/g、纤维素酶添加量45U/g、55℃酶解90min、5000r/min离心20min,油脂得率为47.66%;饮料配方为蔗糖6%、柠檬酸0.1%、复合稳定剂0.2%、蜂蜜4%,可得到组织状态稳定的核桃乳饮料。  相似文献   

17.
采用高压均质处理和热激处理两种方法协助制备乳清蛋白-甜橙油包合物,在单因素试验的基础上采用正交试验对两种制备工艺进行优化。结果表明,采用高压均质处理协助制备包合物的优化条件为:40 MPa压力下均质3次,乳清蛋白:甜橙油1:0.75 g/mL,在此条件下甜橙油的包合率可达84.11%±1.33%,包合物中甜橙油的有效含量为(346.36±5.47) mg/g;采用热激处理协助制备包合物的优化条件为:乳清蛋白:甜橙油8:1 (g/mL)、热激温度70 ℃、热激时间20 min、反应时间20 min,在此条件下甜橙油包合率为39.95%±1.60%,包合物中甜橙油的有效含量为(47.56±1.90) mg/g;采用高压均质协助制备包合物,甜橙油的包合率和包合物中甜橙油的有效含量均极显著高于采用热激处理乳清蛋白法(p<0.01)。因此,采用高压均质协助制备包合物效果更佳。  相似文献   

18.
研究超声波辅助溶剂浸出法提取巴塘核桃油的最佳工艺及其脂肪酸组分。通过单因素以及L9(33)正交实验研究料液比、单次超声时间与间歇时间比及超声时间3个因素对提油率的影响,得到最佳提取条件;采用气相色谱(GC)法测定脂肪酸组分,并与超声波辅助水酶法提取核桃油的脂肪酸组分进行对比分析。结果表明:超声波辅助溶剂浸出法提取该油的最佳工艺条件为:料液比为1:7.5 g/mL,单次超声时间与间歇时间比为3:8 s/s,超声时间为10 min,该条件下提油率达到58.90%;超声波辅助溶剂浸出法与超声波辅助水酶法提取的核桃油脂肪酸主要组分均为亚油酸、棕榈酸、棕榈油酸、硬脂酸、油酸、亚麻酸,且相对含量差异不显著(p>0.05)。结论:超声波辅助溶剂浸出法操作简单、快速、得率高,提取出的核桃油营养丰富、品质优良,为工业化应用提供了精确有效的参考标准,为广泛开发利用巴塘核桃油资源提供了良好的参考价值。  相似文献   

19.
核桃油自氧化及其抗氧化的实验研究   总被引:20,自引:1,他引:19  
以过氧化值(P0V)为指标研究了温度、时间对核桃油自氧化过程的影响及添加抗氧化剂对核桃油抗氧化性能的影响。结果表明,温度、时间对核桃油的氧化过程有高度显著的影响。TBHQ对核桃油具有较好的抗氧化性能,抗坏血酸和柠檬酸对TBHQ均表现出较强的协同抗氧化效应,且抗坏血酸的协同抗氧化性优于柠檬酸。使用0.015%TBHQ+0.01%柠檬酸或0.015%TBHQ+0.01%抗坏血酸为核桃油的抗氧化剂,可使核桃油在15℃下的贮藏期从2.9个月分别延长至29.8个月和38.9个月。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号