首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
《Computers & Fluids》2006,35(8-9):820-830
The lattice Boltzmann (LB) method is extended and adapted to simulate multi-phase flows on non-uniform tree-type grids. Our model is an extension of the model developed by Gunstensen [Gunstensen AK, Rothman D. Lattice Boltzmann model of immiscible fluids. Phys Rev A 1991;43(8):4320–4327], which is based on the Rothman–Keller model [Rothman DH, Keller JM. Immiscible cellular automaton fluids. J Stat Phys 1988;52:1119–1127]. A first approach we use an a priori grid refinement. We find that the maximum number of possible grid levels for problems with dominant capillary forces is very restricted, if the physical interface is allowed to pass over grid interfaces. Thus a second approach based on adaptive grids was developed, where the physical interface is always discretized on the finest grid level. Efficient and flexible data structures have been developed to manage the remeshing. The application of the scheme for a rising bubble in three dimensions shows very good agreement with the semi-analytical solution and demonstrates the efficiency of our approach.  相似文献   

2.
This paper describes the implicit MacCormack scheme [1] in finite volume formulation. Unsteady flows with moving boundaries are considered using arbitrary Lagrangian–Eulerian approach.The scheme is unconditionally stable and does not require solution of large systems of linear equations. Moreover, the upgrade from explicit MacCormack scheme to implicit one is very simple and straightforward.Several computational results for 2D and 3D flows over profiles and wings are presented for the case of inviscid and viscous flows.  相似文献   

3.
《Computers & Fluids》2006,35(8-9):814-819
The fact that the classic lattice Boltzmann method is restricted to Cartesian Grids has inspired several researchers to apply Finite Volume [Nannelli F, Succi S. The lattice Boltzmann equation on irregular lattices. J Stat Phys 1992;68:401–7; Peng G, Xi H, Duncan C, Chou SH. Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys Rev E 1999;59:4675–82; Chen H. Volumetric formulation of the lattice Boltzmann method for fluid dynamics: basic concept. Phys Rev E 1998;58:3955–63] or Finite Element [Lee T, Lin CL. A characteristic Galerkin method for discrete Boltzmann equation. J Comp Phys 2001;171:336–56; Shi X, Lin J, Yu Z. Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element. Int J Numer Methods Fluids 2003;42:1249–61] methods to the Discrete Boltzmann equation. The finite volume method proposed by Peng et al. works on unstructured grids, thus allowing an increased geometrical flexibility. However, the method suffers from substantial numerical instability compared to the standard LBE models. The computational efficiency of the scheme is not competitive with standard methods.We propose an alternative way of discretizing the convection operator using an upwind scheme, as opposed to the central scheme described by Peng et al. We apply our method to some test problems in two spatial dimensions to demonstrate the improved stability of the new scheme and the significant improvement in computational efficiency. Comparisons with a lattice Boltzmann solver working on a hierarchical grid were done and we found that currently finite volume methods for the discrete Boltzmann equation are not yet competitive as stand alone fluid solvers.  相似文献   

4.
The lattice Boltzmann method is being increasingly employed in the field of computational fluid dynamics due to its computational efficiency. Floating-point operations in the lattice Boltzmann method involve local data and therefore allow easy cache optimization and parallelization. Due to this, the cache-optimized lattice Boltzmann method has superior computational performance over traditional finite difference methods for solving unsteady flow problems. When solving steady flow problems, the explicit nature of the lattice Boltzmann discretization limits the time step size and therefore the efficiency of the lattice Boltzmann method for steady flows. To quantify the computational performance of the lattice Boltzmann method for steady flows, a comparison study between the lattice Boltzmann method (LBM) and the alternating direction implicit (ADI) method was performed using the 2-D steady Burgers’ equation. The comparison study showed that the LBM performs comparatively poor on high-resolution meshes due to smaller time step sizes, while on coarser meshes where the time step size is similar for both methods, the cache-optimized LBM performance is superior. Because flow domains can be discretized with multiblock grids consisting of coarse and fine grid blocks, the cache-optimized LBM can be applied on the coarse grid block while the traditional implicit methods are applied on the fine grid blocks. This paper finds the coupled cache-optimized lattice Boltzmann-ADI method to be faster by a factor of 4.5 over the traditional methods while maintaining similar accuracy.  相似文献   

5.
Two multi-thread based parallel implementations of the lattice Boltzmann method for non-uniform grids on different hardware platforms are compared in this paper: a multi-core CPU implementation and an implementation on General Purpose Graphics Processing Units (GPGPU). Both codes employ second order accurate compact interpolation at the interfaces, coupling grids of different resolutions. Since the compact interpolation technique is both simple and accurate, it produces almost no computational overhead as compared to the lattice Boltzmann method for uniform grids in terms of node updates per second. To the best of our knowledge, the current paper presents the first study on multi-core parallelization of the lattice Boltzmann method with inhomogeneous grid spacing and nested time stepping for both CPUs and GPUs.  相似文献   

6.
使用非均匀格子Boltzmann方法对后台阶流动进行了数值模拟.将流体流动区域划分为不同的子区域:对于每个子区域内部,分布函数使用均匀网格计算;对于区域边界,分布函数采用嵌套网格方法进行处理.数值计算结果与其它实验、数值结果相吻合.  相似文献   

7.
The lattice Boltzmann method has attracted more and more attention as an alternative numerical scheme to traditional numerical methods for solving partial differential equations and modeling physical systems. The idea of the lattice Boltzmann method is to construct a simplified discrete microscopic dynamics to simulate the macroscopic model described by the partial differential equations. The use of the lattice Boltzmann method has allowed the study of a broad class of systems that would have been difficult by other means. The advantage of the lattice Boltzmann method is that it provides easily implemented fully parallel algorithms and the capability of handling complicated boundaries. In this paper, we present two lattice Boltzmann models for nonlinear anisotropic diffusion of images. We show that image feature selective diffusion (smoothing) can be achieved by making the relaxation parameter in the lattice Boltzmann equation be image feature and direction dependent. The models naturally lead to the numerical algorithms that are easy to implement. Experimental results on both synthetic and real images are described.  相似文献   

8.
A lattice Boltzmann model for simulating isothermal micro flows has been proposed by us recently [Niu XD, Chew YT, Shu C. A lattice Boltzmann BGK model for simulation of micro flows. Europhys Lett 2004;67(4):600]. In this paper, we extend the model to simulate the micro thermal flows. In particular, the thermal lattice Boltzmann equation (TLBE) [He X, Chen S, Doolen GD. A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 1998;146:282] is used with modification of the relaxation times linking to the Knudsen number. The diffuse scattering boundary condition (DSBC) derived in our early model is extended to consider temperature jump at wall boundaries. Simple theoretical analyses of the DSBC are presented and the results are found to be consistent with the conventional velocity slip and temperature jump boundary conditions. Numerical validations are carried out by simulating two-dimensional thermal Couette flows and developing thermal flows in a microchannel, and the obtained results are found to be in good agreement with those given from the direct simulation Monte Carlo (DSMC), the molecular dynamics (MD) approaches and the Maxwell theoretical prediction.  相似文献   

9.
This paper proposes a sufficient robust stability condition for interval time-delay systems with delay-dependence. The properties of the comparison theorem and matrix measure are employed to investigate the problem. The stability criteria are delay-dependent and less conservative than delay-independent stability criteria [5] , [6] , [12] and [16] and delay-dependent stability criteria 1, [14] , [15] and [17] when delay is small. However, the results of this paper indeed give us one more choice for the stability examination of the interval time-delay systems. Simulation examples are given to demonstrate the application of our result.  相似文献   

10.
Model reference control design methods fail when the plant has one or more non-minimum phase zeros that are not included in the reference model, leading possibly to an unstable closed loop. This is a very serious problem for data-based control design methods, where the plant is typically unknown. In this paper, we extend the Virtual Reference Feedback Tuning method to non-minimum phase plants. This extension is based on the idea proposed in Lecchini and Gevers (2002) for Iterative Feedback Tuning. We present a simple two-step procedure that can cope with the situation where the unknown plant may or may not have non-minimum phase zeros.  相似文献   

11.
A class of conservative discrete ordinate method (C-DOM) for the Bhatnagar–Gross–Krook (BGK) model Boltzmann equation is presented. The C-DOM is the extension of the discrete ordinate method in my previous study (Yang and Huang, 1995 [3]). In the C-DOM, a conservative molecular collision process is employed and thus the conservation properties of the collision integral are maintained at the molecular level. For a broad range of Knudsen number, several test problems, including unsteady shock-tube problem and supersonic/hypersonic flows over circular cylinder, are utilized to demonstrate the performance and validity of the DOM and C-DOM. Results show that the C-DOM can greatly reduce the computer time and memory requirements in hypersonic rarefied gas flow computations.  相似文献   

12.
In the present work we report some performance measures and computational improvements recently carried out using the gyrokinetic code EUTERPE (Jost, 2000 [1] and Jost et al., 1999 [2]), which is based on the general particle-in-cell (PIC) method. The scalability of the code has been studied for up to sixty thousand processing elements and some steps towards a complete hybridization of the code were made. As a numerical example, non-linear simulations of Ion Temperature Gradient (ITG) instabilities have been carried out in screw-pinch geometry and the results are compared with earlier works. A parametric study of the influence of variables (step size of the time integrator, number of markers, grid size) on the quality of the simulation is presented.  相似文献   

13.
Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to understand properties of the particulate matter. We propose a computational technique based on the direct numerical simulation of the particulate flows. The numerical method is based on the distributed Lagrange multiplier technique following the ideas of Glowinski et al. [16] and Patankar [30]. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. Mutual forces for the fluid-particle interactions are internal to the system. Particles interact with the fluid via fluid dynamic equations, resulting in implicit fluid-rigid body coupling relations that produce realistic fluid flow around the particles (i.e., no-slip boundary conditions). The particle-particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEM method of Cundall et al. [10] with some modifications using a volume of an overlapping region as an input to the contact forces. The method is flexible enough to handle arbitrary particle shapes and size distributions. A parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library, which allows handling of large amounts of rigid particles and enables local grid refinement. Accuracy and convergence of the presented method has been tested against known solutions for a falling particle as well as by examining fluid flows through stationary particle beds (periodic and cubic packing). To evaluate code performance and validate particle contact physics algorithm, we performed simulations of a representative experiment conducted at the U.C. Berkeley Thermal Hydraulic Lab for pebble flow through a narrow opening.  相似文献   

14.
Chenghai Sun  Andrew Hsu   《Computers & Fluids》2004,33(10):1363-1385
A compressible lattice Boltzmann model is established on a square lattice. The model allows large variations in the mean velocity by introducing a large particle-velocity set. To maintain tractability, the support set of the equilibrium distribution is chosen to include only four directions and three particle-velocity levels in which the third level is introduced to improve the stability of the model. This simple structure of the equilibrium distribution makes the model efficient for the simulation of flows over a wide range of Mach numbers and gives it the capability of capturing shock jumps. Unlike the standard lattice Boltzmann model, the formulation eliminated the fourth-order velocity tensors, which were the source of concerns over the homogeneity of square lattices. A modified collision invariant eliminates the second-order discretization error of the fluctuation velocity in the macroscopic conservation equation from which the Navier–Stokes equation and energy equation are recovered. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Two-dimensional shock-wave propagations and boundary layer flows were successfully simulated. The model can be easily extended to three-dimensional cubic lattices.  相似文献   

15.
Based on a fourth-order compact difference formula for the spatial discretization, which is currently proposed for the one-dimensional (1D) steady convection–diffusion problem, and the Crank–Nicolson scheme for the time discretization, a rational high-order compact alternating direction implicit (ADI) method is developed for solving two-dimensional (2D) unsteady convection–diffusion problems. The method is unconditionally stable and second-order accurate in time and fourth-order accurate in space. The resulting scheme in each ADI computation step corresponds to a tridiagonal matrix equation which can be solved by the application of the 1D tridiagonal Thomas algorithm with a considerable saving in computing time. Three examples supporting our theoretical analysis are numerically solved. The present method not only shows higher accuracy and better phase and amplitude error properties than the standard second-order Peaceman–Rachford ADI method in Peaceman and Rachford (1959) [4], the fourth-order ADI method of Karaa and Zhang (2004) [5] and the fourth-order ADI method of Tian and Ge (2007) [23], but also proves more effective than the fourth-order Padé ADI method of You (2006) [6], in the aspect of computational cost. The method proposed for the diffusion–convection problems is easy to implement and can also be used to solve pure diffusion or pure convection problems.  相似文献   

16.
The simulation of a stationary fluid flow past an obstacle by means of a lattice Boltzmann method is discussed. The problem of finding appropriate boundary conditions on the boundaries of the truncated numerical domain is addressed by a method recently discussed in the literature, based on a truncated expansion of the solution. The iterative process at the heart of this method is coupled with the iteration steps of a progressive grid refinement technique that allows a rapid convergence towards a well resolved stationary state. It is shown that this combination results in a highly efficient numerical tool which can speed up the resolution process in a substantial manner.  相似文献   

17.
《Computers & Fluids》2006,35(8-9):863-871
Following the work of Lallemand and Luo [Lallemand P, Luo L-S. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Phys Rev E 2003;68:036706] we validate, apply and extend the hybrid thermal lattice Boltzmann scheme (HTLBE) by a large-eddy approach to simulate turbulent convective flows. For the mass and momentum equations, a multiple-relaxation-time LBE scheme is used while the heat equation is solved numerically by a finite difference scheme. We extend the hybrid model by a Smagorinsky subgrid scale model for both the fluid flow and the heat flux. Validation studies are presented for laminar and turbulent natural convection in a cavity at various Rayleigh numbers up to 5 × 1010 for Pr = 0.71 using a serial code in 2D and a parallel code in 3D, respectively. Correlations of the Nusselt number are discussed and compared to benchmark data. As an application we simulated forced convection in a building with inner courtyard at Re = 50 000.  相似文献   

18.
A Lattice-Boltzmann method for incompressible fluid flow is coupled with the dynamic equations of a phase-field model for multiple order parameters. The combined model approach is applied to computationally evaluate the permeability in porous media. At the boundaries between the solid and fluid phases of the porous microstructure, we employ a smooth formulation of a bounce-back condition related to the diffuse profile of the interfaces. We present simulations of fluid flow in both, static porous media with stationary non-moving interfaces and microstructures performing a dynamic evolution of the phase and grain boundaries. For the latter case, we demonstrate applications to dissolving grain structures with partial melt inclusions and computationally analyse the temporal evolution of the microporosity under wetting conditions at the melt-grain boundaries. In any development state of the material, the Darcy number and the hydraulic conductivity of the porous medium are evaluated for various types of fluid.  相似文献   

19.
This paper presents a discontinuous Galerkin (DG) discretization of the compressible RANS and kω turbulence model equations for two-dimensional axisymmetric flows. The developed code has been applied to investigate the transonic flow in safety relief valves.This new DG implementation has evolved from the DG method presented in [1]. An “exact” Riemann solver is used to compute the interface numerical inviscid flux while the viscous flux discterization relies on the BRMPS scheme [2] and [3]. Control of oscillations of high-order solutions around shocks is obtained by means of a shock-capturing technique developed and assessed within the EU ADIGMA project [4].The code has been applied to compute the flow in a spring loaded safety valve at several back pressures and different disk lifts. The predicted device flow capacity and the pressure inside its bonnet have been checked against experimental data. The CFD simulations allow to clarify the complex flow patterns occurring and to explain the measured trends.  相似文献   

20.
We provide an overview of the finite element methods we developed for fluid dynamics problems. We focus on stabilized formulations and moving boundaries and interfaces. The stabilized formulations are the streamline-upwind/Petrov-Galerkin (SUPG) formulations for compressible and incompressible flows and the pressure-stabilizing/Petrov-Galerkin (PSPG) formulation for incompressible flows. These are supplemented with the discontinuity-capturing directional dissipation (DCDD) for incompressible flows and the shock-capturing terms for compressible flows. Determination of the stabilization and shock-capturing parameters used in these formulations is highlighted. Moving boundaries and interfaces include free surfaces, two-fluid interfaces, fluid-object and fluid-structure interactions, and moving mechanical components. The methods developed for this class of problems can be classified into two main categories: interface-tracking and interface-capturing techniques. The interface-tracking techniques are based on the deforming-spatial-domain/stabilized space-time (DSD/SST) formulation, where the mesh moves to track the interface. The interface-capturing techniques were developed for two-fluid flows. They are based on the stabilized formulation, over typically non-moving meshes, of both the flow equations and an advection equation. The advection equation governs the time-evolution of an interface function marking the interface location. We also describe some of the additional methods and ideas we introduced to increase the scope and accuracy of these two classes of techniques. Among them is the enhanced-discretization interface-capturing technique (EDICT), which was developed to increase the accuracy in capturing the interface. Also among them is the mixed interface-tracking/interface-capturing technique (MITICT), which was introduced for problems that involve both interfaces that can be accurately tracked with a moving-mesh method and interfaces that call for an interface-capturing technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号