首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
选取合理的采掘破碎工艺参数和喷嘴结构参数,是实现海洋天然气水合物(以下简称水合物)藏固态流化商业化采掘的关键之一。为了分析实际工程中影响水合物射流破碎效率的因素,依托室内实验和中国南海北部荔湾3站位现场试采取得的数据,以产气量12×10~4 m~3/d作为水合物商业开采目标,采用k—ε湍流模型开展了不同喷嘴直径、泵压等参数情况的仿真模拟分析。研究结果表明:(1)确定了水合物射流破碎临界速度为24 m/s时的喷嘴直径、泵压、排量关系曲线;(2)满足商业开采的单日水合物沉积物采掘量的破碎速度为2.48 m~3/min,其所对应的射流破碎孔径为800mm;(3)在喷嘴直径确定的情况下,直接提升射流排量和泵压会对工艺流程中其他零部件造成一定的损害。结论认为,所优选出的海洋非成岩水合物藏固态流化商业化采掘破碎的设计参数,为固态流化开采水合物破碎参数的优化设计提供了帮助。  相似文献   

2.
我国南海的天然气水合物(以下简称水合物)90%以上都属于非成岩矿体,常规方法难以开采。周守为院士创新性提出了高效开发该类水合物矿体的革命性技术之一——固态流化法,并在中国南海神狐海域依托国内自主知识产权的技术、装备和工艺等,成功试采了该类水合物。在流化试采过程中,井底射流破碎水合物矿体至细小颗粒并随钻井液向上返出,含水合物固相颗粒在温度升高、压力降低至受施工参数影响的、区别于常规静态相平衡曲线的动态相平衡状态时发生分解,使得环空液固流动变为复杂气液固多相流动,井控安全要求极高,需要对施工参数优化设计。为此,基于目标区块工程地质特征并结合复杂井筒多相流动分析,对该工程参数进行优化设计,建立了复杂介质井筒多相流动、温度、压力以及水合物相平衡、分解理论模型和数值计算方法,通过数值仿真、软件仿真以及实验验证,对不同施工参数下的流化试采井筒多相流动进行了分析,形成了海洋天然气水合物流化试采现场工程参数优化设计方法及方案:井底射流流化井段直径不宜过大,应适当提高钻井液排量、密度、施加井口回压,以保证安全携岩和降低井控风险。该基础理论研究成果为现场施工以及试采产能的提升提供了重要技术保障。  相似文献   

3.
为提升固态流化开采中喷嘴对天然气水合物的射流破碎效率,推动固态流化开采规模化、商业化应用,基于CFD和现有单喷嘴射流破碎实验结果,开展了射流压力、收缩段长度和喷嘴直径对锥直形单喷嘴射流速度分布的影响规律研究,并建立了固态流化单喷嘴破碎水合物深度预测新模型。研究结果表明:(1)锥直形喷嘴射流核心段长度与喷嘴直径呈正相关关系,而与射流压力、收缩段长度无关;(2)射流基本段速度衰减与喷嘴直径和射流压力呈负相关,而与收缩段长度无关。进一步结合非成岩水合物临界破碎速度方程,初步建立了极限破碎深度随单喷嘴直径和射流压力变化的数学模型,并基于单喷嘴射流破碎实验结果进行了模型验证与修正。结论认为:(1)建立的极限破碎深度模型是正确的,修正后模型的计算结果与实验值的最大偏差为7.7%,能够满足固态流化实际工程对水合物破碎的要求;(2)建议开展组合喷嘴极限破碎深度模型研究,分析多个喷嘴组合情况下布置夹角和布置间距对极限破碎深度的影响,最终形成一套水合物高效破碎工具设计方法。  相似文献   

4.
海洋天然气水合物固态流化开采大型物理模拟实验   总被引:5,自引:0,他引:5  
天然气水合物是继页岩气、致密气、煤层气等之后潜力巨大的接替能源,国内外天然气水合物开采技术研究和试采工程以降压法为主,均借鉴常规油气开采工艺,由于试采时间短,回避了长期开采存在的环境安全、装备安全、生产安全以及工程地质等风险。为此,由西南石油大学、中国海洋石油集团有限公司、四川宏华石油设备有限公司等单位组成的联合项目组历经多年协同攻关,提出了海洋非成岩天然气水合物固态流化开采原理,发明了基于该原理的模拟实验方法和技术,研制和开发了具有完全自主知识产权的全球首个海洋天然气水合物固态流化开采大型物理模拟实验系统。基于上述实验系统,开展了与海洋非成岩天然气水合物固态流化开采相关的天然气水合物样品快速制备、高效破碎及管道输送等物理模拟实验,验证了海洋非成岩天然气水合物固态流化开采相关理论模型的准确性,揭示了海洋非成岩天然气水合物固态流化开采过程中关键参数的变化规律。该项研究成果为全球首次海洋天然气水合物固态流化试采的成功开展奠定了重要的基础。  相似文献   

5.
天然气水合物(以下简称水合物)分别蕴藏于海洋和陆地永冻土带中,但前者的储量约为后者的100倍。海洋环境中的大部分脉状、块状水合物以及细粒沉积物中的水合物都属于非成岩天然气水合物,一般没有像常规油气藏和砂岩水合物储层那样稳定的圈闭构造。针对海洋非成岩水合物的物理特征、成藏特点,依据水合物固态流化开采法的工艺流程,建立了世界首个海洋天然气水合物固态流化开采实验室。该实验室定位于"全自动化的白领型实验室",实验系统共分为大样品快速制备及破碎、高效管输、高效分离、快速检测等模块单元。该实验室的主体功能包括:(1)高效破岩能力评级;(2)海洋天然气水合物层流化试采携岩能力评价;(3)水合物非平衡分解规律及流态动变规律评价;(4)不同机械开采速率条件下水合物安全输送;(5)井控安全规律模拟。该实验室的关键技术指标:工作压力12 MPa、水平管长度65 m、立管长度30 m、管径3英寸。该实验室能模拟1 200 m水深的全过程水合物固态流化开采工艺过程,是西南石油大学联合中国海洋石油总公司、宏华集团原始创新自主设计、自主研发的标志性实验室。  相似文献   

6.
由于深海天然气水合物开采的复杂性,世界范围内,开采技术整体上尚无成熟配套,单井产量低、连续时间短、经济效益差,因此需要研究高效开采天然气水合物储层的工艺方法。本研究提出直井细分层冷水压裂的工艺技术,详细调研研究了储层的地质及力学参数。天然气水合物储层抗张强度、弹性模量偏小,具备可压裂性;针对天然气水合物储层,比较了水力割缝技术、水力喷射径向水平井技术、水力压裂技术的适用性,推荐采用水力压裂技术增产;建立了海下天然气水合物压裂原则,推荐无支撑剂压裂技术;提出了低温、低阻海水压裂液技术。当井口注入压裂液温度为储层温度(15.4℃)时,可确保进入地层温度小于储层温度一定范围。分析了各种分层压裂工艺技术的适应性,推荐射孔桥塞或连续油管水力喷砂射孔压裂分层压裂技术。对单缝压裂施工参数进行了设计。  相似文献   

7.
基于我国海域天然气水合物钻探取样储层具有埋深浅、无致密盖层、非成岩、弱胶结、易于碎化等特点,提出了针对深水浅层非成岩天然气水合物固态流化试采方案,其核心思想是将深水浅层非成岩天然气水合物矿体通过机械破碎流化转移到密闭的气、液、固多相举升管道内,利用举升过程中海水温度升高、静水压力降低的自然规律使水合物逐步气化,变非成岩天然气水合物分解过程的不可控为可控,实现深水浅层天然气水合物安全试采;其工程实施策略为目标勘探确定井位、随钻测井证实水合物层位、钻探取样及分析作为试采实施依据,即在钻探取样获取岩心后确定水合物有效层位,依托深水工程勘察船、采用无隔水管钻杆钻进至水合物层后固井并建立井口,采用自主的井下喷射工艺使含水合物沉积物在举升过程中自然分解,利用密度差实现部分砂回填,其余气、液、固流化物返回地面测试流程,经过高效分离、气体储集、放喷等技术实现快速点火测试。2017年5月,中国海油在南海北部荔湾3站位依托深水工程勘察船"海洋石油708",利用完全自主研制技术、工艺和装备,在水深1 310 m、水合物矿体埋深117~196 m处,在全球首次成功实施海洋浅层非成岩天然气水合物固态流化试采作业,标志着我国已在具有自主知识产权的天然气水合物勘探开发关键技术上取得历史性突破。  相似文献   

8.
针对海洋天然气水合物开发技术与常规海洋油气开发技术的异同,分析了海洋天然气水合物储层特性和试采面临的挑战,介绍了天然气水合物试采关键技术,包括控压钻井技术、套管钻井技术、抑制性钻井液、钻井液冷却系统、低温低放热水泥浆体系、完井技术、开采方式优选和储层及环境监测技术等,指出了我国海洋天然气水合物试采应围绕水合物物理力学性质、安全成井、连续排采与防砂、开采方法适应性评价、试采过程储层参数和地层形变监测等技术难题开展研究,通过示范工程,形成海洋天然气水合物试采技术体系,为我国海洋天然气水合物的高效开发提供技术支撑。   相似文献   

9.
海洋非成岩天然气水合物藏固态流化采空区安全性评价   总被引:2,自引:0,他引:2  
为了解决固态流化法开采海洋非成岩天然气水合物(以下简称水合物)采空区安全性如何评估的问题,以中国南海神狐海域的水合物藏为例,根据水合物射流破碎流化开采工艺及流程,基于圣维南原理建立了采空区有限元模型并进行了网格精度验证,采用研究区水合物藏的物性参数和力学特征参数,模拟分析了垂直和水平采空区的稳定性问题,并探索了海洋非成岩水合物稳定层采空区的安全评价方法。结果表明:(1)基于圣维南原理建立的海底采空区有限元分析模型能够保证计算精度且计算工作量不大;(2)垂直采空区最大偏应力随采空区直径的增加呈现出先快速增加后缓慢增加的趋势,最大应变则随采空区直径的增加而呈线性增加;(3)垂直采空区的安全问题主要受到应力水平的控制,采空区直径不宜超过800 mm;(4)水平采空区最大偏应力和最大应变均随水平采空区直径的增加而呈现出单调增加的趋势。结论认为:垂直采空区的直径可以达到比较大的临界值,其安全性主要属于采空区井壁强度问题;而水平采空区的临界直径值则比较小,其安全性主要属于采空区稳定性问题。  相似文献   

10.
为探究适合南海天然气水合物特点的高效开发模式,对比分析了淹没围压条件下锥形射流和旋转射流冲蚀天然气水合物沉积物的成孔规律。首先,利用 LS-DYNA软件,建立了旋转/锥形射流冲蚀天然气水合物沉积物的拉格朗日–欧拉(ALE)流固耦合模型,分析了淹没、围压条件对旋转/锥形射流冲蚀天然气水合物沉积物效率的影响;然后,利用自主设计研制的天然气水合物生成及射流冲蚀可视试验装置,进行了天然气水合物沉积物生成及冲蚀试验,天然气水合物二次生成后,在冲蚀坑中注石膏,测量冲蚀孔孔深及孔径。对比分析数值模拟和室内试验结果发现:围压在增强天然气水合物沉积物强度的同时,抑制了射流扩散能力,降低了射流冲蚀天然气水合物沉积物的效率;在无围压和围压5 MPa条件下,旋转射流冲蚀天然气水合物沉积物体积分别是锥形射流的1.8和1.7倍。研究结果表明,对于泥质粉砂储层天然气水合物沉积物,旋转射流在保证冲蚀孔孔深的同时,具有比锥形射流更强的扩孔能力,这为固态流化法开采天然气水合物提供了依据。   相似文献   

11.
自进式高压水射流破岩数值模拟分析   总被引:1,自引:1,他引:0  
针对应用于开发低渗透性、裂缝性和薄储层等油气藏的高压水射流技术,基于推导的水射流破岩的临界速度,设计了一种用于油田井下破岩的自进式高压水射流喷头,并应用湍流模型对喷头内部的水射流流场进行数值模拟分析,应用动力学模型对水射流破岩过程进行数值模拟分析。结果表明,入口压力30MPa时,喷头产生的水射流达到了破岩所需速度,能够实现破岩,并且破岩产生的破碎坑的内切圆直径大于喷头的最大外径,可实现自进式破岩,而且破岩过程中水射流速度是"脉动下降"的。这也说明所设计的喷头用于破岩是可行的,这种设计方法、建模方法和数值模拟方法在分析高压水射流破岩方面是可行的。  相似文献   

12.
现有煤层气开发直井采用水力造穴方式不能确定造穴的几何尺寸和形态,采用机械造穴方式刀杆容易变形、易使工具落入井内,水力-机械复合造穴技术操作复杂、成本高。为此,提出煤层气水平井扇形磨料射流喷射造穴的新思路。采用室内试验和数值模拟相结合的方法,优选和优化了扇形喷嘴的几何结构参数,分析了磨料颗粒在流场中的运动轨迹及加速特性,探索了射流参数和磨料参数对颗粒运动速度的影响规律。研究结果表明:椭圆形出口的扇形喷嘴适用于煤层气水平井喷射造穴;扇形磨料射流的颗粒加速区域主要集中在喷嘴收缩段和射流等速核区域内;流体的速度矢量场特征和磨料的运动轨迹特性表明,喷射造穴的主要作用机理是切割煤体的同时冲击破碎煤块;优化布置不同喷射角度的扇形喷嘴组合、提高喷嘴压降及合理控制砂比,可收到“网格式”切割破碎煤岩的效果,从而达到大范围应力释放的目的。所得结论可为煤层气水平井喷射造穴提供理论基础和设计参考。  相似文献   

13.
超高压射流钻头破岩实验研究   总被引:1,自引:0,他引:1  
超高压水射流技术在石油工程中的应用越来越广泛,目前超高压射流联合机械破岩是提高钻井速度最具潜力和最具可行性的方法。通过室内实验和现场试验研究了淹没条件下超高压水射流破碎岩石的主要规律,探寻影响破岩效果的主要因素及其规律,为超高压射流联合机械破岩及超高压PDC钻头的进一步研究奠定了基础。研究发现,影响超高压射流破岩的主要因素有压力、喷距、喷嘴移动速度和喷射角度等,射流压力越高破岩效果越好,最优喷距随着压力的升高而增大,200 MPa时最优喷距达到32.5倍喷嘴直径。实验条件下,150 MPa时破岩效率最高,喷射角为14°破岩效果最好。根据实验结果,对钻头切削齿和喷嘴布置进行了优化,设计制造了专用设备和工具,现场试验取得了较好的效果,可进一步推广应用。  相似文献   

14.
天然气水合物降压开采实验研究   总被引:17,自引:4,他引:13  
为了研究天然气水合物(NGH)降压开采基本规律,应用研制的NGH合成与开采实验系统,研究NGH降压开采的相平衡和基本生产规律.用图形法测定了4个NGH相平衡点,与已有文献数据吻合很好,说明了该实验装置和方法的可靠性.对于高孔高渗的多孔介质,相平衡数据与反应釜水溶液中相平衡数据一致,在进行NGH开采相平衡研究时,可以借用现有反应釜水溶液中NGH的数据和模型.在实验模型条件下,降压开采是比较好的NGH开采方法,产气速率较高且主要受压降速率控制.储集层压力控制和NGH自保护效应是实际NGH矿藏降压开采需要解决的关键问题.具有下伏游离气或同层伴生气的NGH矿藏,为克服以上两点不利提供了可能.另外,还可以考虑注热水、注化学剂等其他辅助强化开采措施.图5表2参15  相似文献   

15.
水合物沉积层的渗透率是影响天然气水合物开采效率的重要物性参数之一,为了探讨在天然气水合物开发过程中有效体积应力和水合物饱和度变化对含水合物沉积层渗透率的影响规律,选取天然粉砂土作为沉积物骨架,进行了不同饱和度水合物沉积物的三轴加载渗透率试验。结果表明:(1)当水合物饱和度恒定时,水合物沉积物的渗透率与有效体积应力呈负指数曲线变化规律,且曲线的斜率随着有效体积应力的增加由大变小;(2)在一定的有效体积应力条件下,水合物沉积物的渗透率随水合物饱和度亦呈指数递减规律变化;(3)有效体积应力和水合物饱和度变化对水合物沉积物渗透率的影响表现为非独立性,即随着前者的增大,后者对水合物沉积物渗透率的影响减弱,而随着后者的增加,前者对水合物沉积物渗透率的影响也减小。由此提出了有效体积应力和水合物饱和度对水合物沉积物渗透率的影响机理,即前者对渗透率的影响在于其对渗流通道的压缩作用,而后者对渗透率的影响则在于水合物对渗流通道的堵塞作用。  相似文献   

16.
我国煤层气产业已经历10多年的发展,逐步建成了沁水盆地和鄂尔多斯盆地两个产业基地,但平均单井产气量低仍然是制约中国煤层气高效开发的最大难题。目前高煤阶煤层气产量已占到我国煤层气总产量的90%以上,而高煤阶煤层气资源今后将大比例转入中深层开采,面对不同的构造场、应力场、裂隙场等复杂的煤层气赋存流动条件,现有的工程技术手段与地质适配性都面临着的巨大挑战。为此,以中国石油华北油田公司沁水盆地高煤阶煤层气技术攻关与实践为范例,剖析煤层气"四低"(储量有效动用率低、剩余可动用储量低、单井产气量低、开发利润低)开发现象,辩证思考煤层气开发的本质。研究结果表明:①对于煤层气储量可采性、地质差异性、工程技术适应性、科学排采方面的认识不到位是目前煤层气开发存在的重大问题;②必须破解现有技术条件下开发储量的控制技术、经济产能建设的区域优选技术、适应地层特征的工程技术、开发方案的顶层设计技术等关键瓶颈,此为实现煤层气科学开发的必经之路;③打破传统地质认识,突破以往认为埋深800 m以深的煤层气不宜开发的思想限制,高煤阶的马必东地区、中煤阶的大城凸起的煤层气开发实践成效已经证实:埋深既不是决定煤层气是否能够开发的界限条件,中深层也不是煤层气开发的禁区。  相似文献   

17.
南海神狐海域天然气水合物降压开采过程中储层的稳定性   总被引:5,自引:0,他引:5  
储层稳定性是天然气水合物(以下简称水合物)开采所面临的关键问题之一,也是确保水合物安全高效开采的前提,目前相关的研究较少。为了分析降压法开采南海神狐海域水合物过程中储层的稳定性,根据该海域水合物的钻探资料,建立三维水合物降压开采地质模型,采用非结构网格对模型进行离散;在综合考虑水合物开采过程中的传热传质过程和沉积物变形过程的基础上,建立了热—流—固—化四场耦合的数学模型;基于非结构网格技术,采用有限单元方法对模型求解,获得水合物降压开采条件下的储层孔隙压力、温度、水合物饱和度和应力的时空演化特征,进而分析研究了该海域水合物降压开采过程中储层沉降、应力分布和稳定性。结果表明:(1)储层渗透率越大、井底降压幅度越大,沉降量越大,沉降速度越快;(2)开采过程中储层孔隙压力减小会导致有效应力增加,且近井处剪应力增加较明显,易发生剪切破坏;(3)储层有效应力的增加导致了储层沉降,沉降主要发生在开采的早期,开采60 d,储层最大沉降为32 mm,海底面最大沉降为14 mm。结论认为,南海神狐海域水合物储层渗透率低,储层压力降低的影响范围有限,在60 d的开采时间内,储层不会发生剪切破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号