共查询到17条相似文献,搜索用时 125 毫秒
1.
摘要:针对传统核相关滤波(KCF)在跟踪彩色视频序列不能有效利用颜色特征,并且处理目标遮挡和形变能力低等问题,提出一种响应置信度的多特征融合核相关滤波跟踪算法。该算法首先提取目标图像的方向直方图特征和颜色直方图特征,通过计算高响应值点在响应图上层的占比,来判断目标的跟踪情况,进而调整学习率的大小;然后用两种特征的平均峰相关能量(APCE)和最大响应峰值的乘积来加权融合目标位置。实验对比表明,提出的跟踪算法在精度和成功率上相对于KCF算法分别提升了12.8%和22.6%, 在目标发生遮挡、快速移动、旋转等复杂情况下仍然具有较强的鲁棒性。 相似文献
2.
针对复杂环境下仅使用单一图像特征跟踪精度和鲁棒性差的问题,提出一种多特征融合的相关滤波目标跟踪算法。该算法首先从目标和背景区域分别提取方向梯度直方图(Histogram of oriented gradient,HOG)特征、颜色直方图特征和卷积特征,采用固定权重方法融合HOG特征和颜色直方图特征的特征响应图,然后将该层融合结果与卷积特征响应图采用自适应权重融合策略进行融合,基于融合后的响应图估计出目标位置,并采用尺度估计方法解决目标尺度变化问题,最后采用稀疏模型更新策略进行模型更新。在OTB-2013公开标准测试集中验证本文算法性能,并与主流的目标跟踪算法进行了对比分析。实验结果表明,与其中最优算法相比,本文算法的平均距离精度值和平均重叠精度值都有所提高。本文算法由于有效地利用了HOG特征、颜色直方图特征和卷积特征,在复杂场景下目标跟踪的准确性和鲁棒性都优于其他算法。 相似文献
3.
针对图像目标跟踪问题,为提高跟踪精度,提出了一种多特征融合的自适应相关滤波跟踪算法。算法首先选取HOG和CN两种互补特征,分别训练两个相关滤波跟踪器跟踪图像目标,然后利用提出的响应图置信度计算公式计算两个跟踪器的响应图权重并进行自适应融合做出决策。滤波器更新阶段,算法结合两个特征的响应图置信度与两帧之间的变化率动态调整滤波器学习速率。仿真实验采用跟踪基准数据库(OTB-2013)中的36组彩色视频序列进行实验,对比了流行的相关滤波跟踪算法,结果表明,该算法在平均跟踪精度上优于其他算法,具有一定的应用价值。 相似文献
4.
为解决在复杂背景条件下的跟踪不稳定问题,提高目标跟踪的鲁棒性和准确性,研究一种在传统核相关滤波算法的基础上对多特征进行线性融合和多峰值检测更新机制结合的核相关滤波目标跟踪算法,使用多个专家进行评估,充分结合各特征的优势,训练出最优的相关滤波器.通过O T B-2013公开数据集全部视频序列对算法进行验证,该算法准确度能达到81.7%,成功率达到69.2%,验证了该算法能够在旋转、运动模糊、快速运动、形变、光照变化和超出视野等场景下取得较好的结果,是一种稳定的目标跟踪算法. 相似文献
5.
无人机视觉跟踪是视觉跟踪未来应用的核心领域,其由于跟踪目标像幅较小、表 观不清且易受到无人机飞行姿态多变、飞行稳定性差等因素的影响而难以对目标进行鲁棒的跟 踪,特别是发生跟踪遮挡时,算法跟踪漂移后无法进行模型的更新。为提高无人机视频的跟踪 效果,提出一种多特征重检测跟踪方法。首先采用多特征融合的方式提高跟踪算法在无人机跟 踪特征的判别性。其次目标在出现遮挡时,扩大搜索区域,采用滑动窗口采样找到置信度最高 的目标区域并实现模型更新。通过一系列无人机视频实验结果表明,该算法在遇到遮挡问题时 具有较好的鲁棒性,能够提高无人机在目标跟踪过程中的准确性。 相似文献
6.
7.
目的 由于目标在复杂场景中可能会发生姿态变化、物体遮挡、背景干扰等情况,目标跟踪仍然是一个具有挑战性的课题。目前判别性相关滤波方法在目标跟踪问题上获得了成功而又广泛的应用。标准的相关滤波方法基于循环偏移得到大量训练样本,并利用快速傅里叶变换加速求解滤波器,使其具有很好的实时性和鲁棒性,但边界偏移带来的消极的训练样本降低了跟踪效果。空间正则化的相关滤波跟踪方法引入空间权重函数,增强目标区域的滤波器作用,在增大了目标搜索区域的同时,也增加了计算时间,而且对于目标形变不规则,背景相似的情景也会增强背景滤波器,从而导致跟踪失败。为此,基于以上问题,提出一种自适应融合多种相关滤波器的方法。方法 利用交替方向乘子法将无约束的相关滤波问题转化为有约束问题的两个子问题,在子问题中分别采用不同的相关滤波方法进行求解。首先用标准的相关滤波方法进行目标粗定位,进而用空间正则化的相关滤波跟踪方法进行再定位,实现了目标位置和滤波模板的微调,提高了跟踪效果。结果 本文算法和目前主流的一些跟踪方法在OTB-2015数据集中100个视频上,以中心坐标误差和目标框的重叠率为评判标准进行了对比实验,本文算法能较好地处理多尺度变化、姿态变化、背景干扰等问题,在CarScale、Freeman4、Girl等视频上都表现出了最好的跟踪结果;本文算法在100个视频上的平均中心坐标误差为28.55像素,平均目标框重叠率为61%,和使用人工特征的方法相比,均高于其他算法,与使用深度特征的相关滤波方法相比,平均中心坐标误差高了6像素,但平均目标框的重叠率高了4%。结论 大量的实验结果表明,在目标发生姿态变化、尺度变化等外观变化时,本文算法均具有较好的准确性和鲁棒性。 相似文献
8.
为提高复杂背景下目标跟踪的鲁棒性,提出一种基于相关滤波的自适应特征融合目标跟踪算法.在HOG特征基础上,增加HSV颜色概率直方图,以此获得准确的位置预测.然后分别训练颜色名和HOG特征,并根据两个响应图的峰值自适应地分配融合系数,进而基于尺度池方法,采用多通道特征实现目标的尺度估计.模型的高置信度更新由两个响应图的平均... 相似文献
9.
10.
针对复杂场景下目标遮挡和尺度变化所导致的跟踪效果不佳问题,提出一种基于融合特征的多尺度快速相关滤波跟踪算法。首先,对目标的3种特征降维融合构成特征矩阵;其次,采用主成分分析思想实时地提取显著特征,重构特征矩阵,在有效降维的同时训练位置相关滤波器;最后,利用融合特征矩阵训练尺度相关滤波器,从而准确预测目标位置和尺度。实验部分将改进算法与目前流行的相关滤波跟踪算法进行比较,结果表明,改进算法在目标遮挡和尺度变化场景下跟踪精度较高,平均跟踪速度达到52.5 frame/s。 相似文献
11.
目的 针对现实场景中跟踪目标背景复杂、光照变化、快速运动、旋转等问题,提出自适应多特征融合的相关滤波跟踪算法。方法 提取目标的HOG(histogram of oriented gradients)特征和利用卷积神经网络提取高、低层卷积特征,借助一种自适应阈值分割方法评估每种特征的有效性,得到特征融合的权重比。根据权重系数融合每种特征的响应图,并据此得到目标的新估计位置,利用尺度相关滤波器计算目标尺度,得到目标尺度完成跟踪。结果 在OTB(object tracking benchmark)-2013公开数据集上进行实验,在对多特征融合进行分析的基础上,测试了本文算法在11种不同属性下的跟踪性能,并与当前流行的7种算法进行对比分析。结果表明,本文算法的成功率和精确度均排名第1,相较于基准算法DSST (discriminative scale space tracking)跟踪精确度提高了4%,成功率提高了6%。在复杂场景下比其他主流算法更具有鲁棒性。结论 本文算法以DSST相关滤波跟踪器为基准算法,借助自适应阈值分割方法评估每种特征的有效性,自适应融合两层卷积特征和HOG特征,使得判别性越强的单一特征融合权重越大,较好表达了目标的外观模型,在背景复杂、目标消失、光照变化、快速运动、旋转等场景下表现出较强的跟踪准确性。 相似文献
12.
针对星空背景下目标相似度高、数量大和误检数目较多所导致的空中红外多目标跟踪困难问题,提出基于分层数据关联的空中红外多目标在线跟踪方法。首先,根据红外场景特性来提取目标的位置特征、灰度特征和尺度特征;其次,综合这三个特征来计算目标与轨迹之间的初步关联关系以获得真实目标;再次,将所获得的真实目标按照尺度大小分类,大尺度类目标数据关联采用表观特征、运动特征、尺度特征三种特征相加的方法来计算,小尺度类目标数据关联采用表观特征与运动特征两种特征相乘的方法来计算;最后,根据匈牙利算法对两类目标分别进行目标分配、完成轨迹更新。多种复杂情况下的实验结果表明:与仅采用运动特征的在线跟踪方法相比,所提方法的跟踪准确率提升了12.6%;与采用多特征融合的方法相比,所提方法的分层数据关联不仅提高了跟踪速度,也使跟踪准确率提升了19.6%。综上,该方法不仅跟踪精度高,而且具有较好的实时性和抗干扰能力。 相似文献
13.
针对星空背景下目标相似度高、数量大和误检数目较多所导致的空中红外多目标跟踪困难问题,提出基于分层数据关联的空中红外多目标在线跟踪方法。首先,根据红外场景特性来提取目标的位置特征、灰度特征和尺度特征;其次,综合这三个特征来计算目标与轨迹之间的初步关联关系以获得真实目标;再次,将所获得的真实目标按照尺度大小分类,大尺度类目标数据关联采用表观特征、运动特征、尺度特征三种特征相加的方法来计算,小尺度类目标数据关联采用表观特征与运动特征两种特征相乘的方法来计算;最后,根据匈牙利算法对两类目标分别进行目标分配、完成轨迹更新。多种复杂情况下的实验结果表明:与仅采用运动特征的在线跟踪方法相比,所提方法的跟踪准确率提升了12.6%;与采用多特征融合的方法相比,所提方法的分层数据关联不仅提高了跟踪速度,也使跟踪准确率提升了19.6%。综上,该方法不仅跟踪精度高,而且具有较好的实时性和抗干扰能力。 相似文献
14.
针对单一特征存在的缺陷和目标快速变化时易跟丢的问题,提出了一种结合学习率调整的自适应特征融合相关滤波跟踪算法。算法采用互补的梯度特征和颜色特征进行特征融合,通过计算滤波响应的大小来决定下一帧在融合特征中各自所占的权重,凸显优势特征,使目标与背景更具区分度。提取目标后需要更新滤波器,为了避免滤波器跟不上目标变化的情况发生,引入学习率调整机制,使滤波器更新速度能够随目标外观变化进行在线调整。因此,相较同类特征融合算法,本算法准确高效,且对于快速形变目标的鲁棒性更强。实验证明,本算法在精度和成功率上都比现有相关滤波算法更优,具有一定的应用价值。 相似文献
15.
16.
17.
目的 目标跟踪是计算机视觉领域重点研究方向之一,在智能交通、人机交互等方面有着广泛应用。尽管目前基于相关滤波的方法由于其高效、鲁棒在该领域取得了显著进展,但特征的选择和表示一直是追踪过程中建立目标外观时的首要考虑因素。为了提高外观模型的鲁棒性,越来越多的跟踪器中引入梯度特征、颜色特征或其他组合特征代替原始灰度单一特征,但是该类方法没有结合特征本身考虑不同特征在模型中所占的比重。方法 本文重点研究特征的选取以及融合方式,通过引入权重向量对特征进行融合,设计了基于加权多特征外观模型的追踪器。根据特征的计算方式,构造了一项二元一次方程,将权重向量的求解转化为确定特征的比例系数,结合特征本身的维度信息,得到方程的有限组整数解集,最后通过实验确定最终的比例系数,并将其归一化得到权重向量,进而构建一种新的加权混合特征模型对目标外观建模。结果 采用OTB-100中的100个视频序列,将本文算法与其他7种主流算法,包括5种相关滤波类方法,以精确度、平均中心误差、实时性为评价指标进行了对比实验分析。在保证实时性的同时,本文算法在Basketball、DragonBaby、Panda、Lemming等多个数据集上均表现出了更好的追踪结果。在100个视频集上的平均结果与基于多特征融合的尺度自适应跟踪器相比,精确度提高了1.2%。结论 本文基于相关滤波的追踪框架在进行目标的外观描述时引入权重向量,进而提出了加权多特征融合追踪器,使得在复杂动态场景下追踪长度更长,提高了算法的鲁棒性。 相似文献