首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
主要综述了计算机辅助技术在熔融沉积3D打印中的应用,其中包括在对喷头温度场的分析、对制件温度场、应力场和压力场的分析以及预测不同工艺参数对制件精度的影响。其中涉及的高分子材料包括丙烯腈–丁二烯–苯乙烯塑料、聚醚醚酮材料和聚乳酸材料;涉及的工艺参数主要为喷头温度、成型室温度、打印速率、扫描方式和分层厚度;采用的模型制件通常为板状制件,也包括结构较为复杂的人工骨制件。  相似文献   

2.
将聚苯乙烯(PS)粉与玻璃纤维(GF)粉通过机械混合制备复合粉料,利用选择性激光烧结技术制备了PS/GF烧结制件,在激光功率25 W、预热温度75℃下研究了扫描速度、单层厚度和扫描间距对PS/GF制件弯曲强度和Z向尺寸的影响,并对工艺参数进行了正交优化。结果表明,在实验取值范围内,随上述3种工艺参数值的增大,制件弯曲强度呈降低趋势,而Z向尺寸相对误差由正值逐渐向负值发展。正交试验结果表明,扫描速度对制件的弯曲强度和尺寸精度影响最大,扫描间距影响次之,单层厚度影响最小;确定了扫描速度1 200 mm/s、单层厚度0.25 mm、扫描间距0.28 mm为最佳工艺参数,此时制件弯曲强度为10.41 MPa,Z向尺寸相对误差为2.35%,基本满足制件的应用要求。  相似文献   

3.
岳奇  葛正浩  乔宇杰 《塑料》2023,(1):44-49
基于螺杆挤出原理设计了一款使用颗粒状原料的3D打印装置,可满足打印多材料工业级大型制件的需求。打印过程控制参数对制件质量、尺寸精度的影响较显著。利用自主设计的螺杆挤出式3D打印装置,以自制聚乳酸基复合颗粒材料为打印原材料,通过设计正交试验研究了在喷嘴直径和底板温度一定的情况下,喷嘴温度、打印速度、层高、挤出丝单位脉冲数4个过程控制参数对打印效果的影响,并且获得较优的工艺参数组合。从打印制件的质量、成型精度和拉伸力学性能3个方面进行分析,结果表明,喷嘴温度设置为210℃、打印速度设置为30 mm/s、层高设置为0.7、挤出丝单位脉冲数150为该装置的较优工艺参数组合。  相似文献   

4.
采用商用聚乳酸(PLA)线材作为熔融沉积成型(FDM)打印材料,以拉伸强度和冲击强度为优化指标,设计正交试验,从分层厚度、打印速度、喷嘴温度、填充角度等元素探究成型工艺参数对FDM打印制件力学性能的影响。利用极差分析法,考察了各工艺参数对制件力学性能的影响情况,通过综合评分法和综合平衡法,获得了最优成型工艺参数组合并验证试验结果正确性。结果表明,分层厚度为0.3 mm,打印速度为90 mm/s,喷嘴温度为220 ℃,填充角度为45 °/45 °时,FDM制件的力学性能最优。  相似文献   

5.
为提升连续碳纤维(CF)和短切CF增强尼龙6复合材料3D打印制件的力学性能、优化3D打印基础工艺参数,基于熔融沉积型3D打印工艺,通过自主搭建的双喷头3D打印实验平台制备打印制件,并以此为研究对象,设计4因素3水平正交试验,研究连续CF隔层数、连续CF打印间距、打印温度、打印速度四种工艺参数对打印制件拉伸强度和弯曲强度的影响。采用极差分析法得到最佳工艺参数组合,验证正交试验结果。使用扫描电子显微镜观察拉伸制件和弯曲制件的断裂面微观形貌,进一步探究了打印制件的层间断裂形貌特性和层内丝材分布规律。结果表明,当连续CF隔层数为1、连续CF打印间距为0.5 mm、打印温度为250℃、打印速度为900 mm/s时,打印制件的层内沉积线之间孔隙较少,层间结合效果较好,其拉伸强度和弯曲强度达到最高,分别为109.73 MPa和119.14 MPa,与短切CF增强尼龙6复合材料相比,拉伸强度提升了249%,弯曲强度提升了286%。  相似文献   

6.
微齿轮注射成型数值模拟及正交优化   总被引:1,自引:0,他引:1  
基于CAE软件采用正交试验设计方案对微注射成型工艺参数如模具温度、熔体温度、注射速率、保压压力、保压时间及冷却时间等与微齿轮制件质量的关系进行了数值模拟,并利用直观分析法和方差分析法对模拟结果进行了分析.结果表明,当模具温度为40℃、熔体温度为225℃、注射速率为10 cm3/s、保压压力为100 MPa、保压时间为1...  相似文献   

7.
《塑料科技》2016,(7):38-41
采用选择性激光烧结(SLS)技术,在激光功率25 W、预热75℃等工艺条件下制备了聚苯乙烯/玻璃纤维(PS/GF)制件,研究了扫描速率、扫描间距和单层厚度对该制件X、Y、Z方向尺寸的影响,并通过正交试验对工艺参数进行优化。结果表明:对于PS/GF制件,其Z向的尺寸相对误差及变化幅度最大。三个工艺参数中,扫描速率对制件尺寸的影响最大,单层厚度的影响次之,扫描间距的影响最小;PS/GF制件的最佳SLS成型工艺参数为扫描速率2 000 mm/s、单层厚度0.25 mm、扫描间距0.28 mm。  相似文献   

8.
以玻璃纤维增强聚乳酸为例,通过先双螺杆共混造粒后单螺杆挤出的方法,制备(1.75±0.05) mm线径规格的线材,然后利用3D打印工艺制得玻纤增强聚乳酸制件。采用质量分数30%磨碎玻纤增强聚乳酸线材,根据打印工艺参数对打印制件力学性能与表面光滑度的影响程度,对比了打印路径、打印温度及打印速度对制件的影响。结果表明,当打印路径为0°方向,打印温度为220℃及打印速度为60 mm/s时,出料顺畅,制件黏结牢固且表面光滑。在上述打印工艺参数下,研究了玻纤含量及玻纤保留长度对制件力学性能及形貌的影响。结果表明,当玻纤质量分数为20%时,制件的拉伸及弯曲性能达到最佳,打印顺畅,制件表面光滑平整,在相同的玻纤含量下,选择短切玻纤(保留长度367μm)时打印制件的拉伸强度及弯曲强度分别为68.42 MPa和93.29 MPa。  相似文献   

9.
谭波 《塑料科技》2023,(6):75-79
为解决注塑制件成型过程翘曲变形问题,采用Moldflow软件对自动化设备电子元器件外壳注塑过程进行模流分析,但是模拟分析需要的样本数量较多,整个模拟过程缓慢。为了解决这一问题,采用拉丁超立方抽样方法对制件进行随机取样,建立RBF神经网络代理模型。通过模拟退火算法对代理模型进行全局寻优,对制件模具温度、熔体温度、保压压力以及冷却时间进行多目标优化,以制件的翘曲变形量为响应目标,获得最佳的工艺参数组合。结果表明:代理模型R2为0.920 98,模拟值与预测值基本一致,误差为0.84%。通过模拟退火算法优化后,最佳的成型工艺参数保压压力为59 MPa,冷却时间为18 s,模具温度为50℃,熔体温度为240℃,此时制件翘曲量最小为0.538 5 mm,通过该方法为改善制件翘曲变形提供参考。  相似文献   

10.
为了提高熔融沉积成型(FDM)制件的尺寸精度和表面质量,以聚乳酸(PLA)筒形打印件为实验对象,采用正交试验设计方法,研究了分层厚度、喷头温度、打印速度和填充率对试样尺寸精度的影响规律,基于综合平衡法得出最优工艺参数组合为:分层厚度0.1 mm、喷嘴温度200 ℃、打印速度60 mm/s、填充率30 %;为了进一步提高试样的表面质量,对其进行蒸汽平滑处理,研究了处理温度和处理时间对试样表面粗糙度的影响。结果表明,粗糙度随处理温度的升高和处理时间的延长而降低,在50 ℃×7 min的处理条件下,试样表面粗糙度(Ra)从9.227 μm降低到3.435 μm,显著改善了试样表面质量。  相似文献   

11.
李红莉  叶军  刘志安 《塑料工业》2022,50(1):99-102,162
针对狭长型薄壁零件的注塑模具冷却优化问题,以典型零件引水管为研究对象,采用随形水路的冷却设计方案,通过Moldflow软件,进行随形水路与传统水路的仿真模拟及对比.结果 表明,随形冷却在产品表面温度分布均匀性上提升了52.6%,冷却时间上缩短了19.7%,整个注射过程填充情况良好,体积收缩符合要求;并采用选择性激光熔化...  相似文献   

12.
采用五因素四水平正交试验设计,对16组不同工艺参数(打印层厚、填充密度、打印温度、填充速度、外壳厚度)的FDM 3D打印聚乳酸(PLA)制件力学性能进行了测试和结果分析,确定了影响PLA制件力学性能的主要因素,其中,外壳厚度对制件力学性能影响最为明显,打印温度影响最小,同时分析得到了在打印层厚0.15 mm,填充密度40%,打印温度210℃,填充速度60 mm/s,外壳厚度1.6 mm条件下可获得力学性能最佳的制件。最后对试验数据进行回归分析,拟合得到了FDM打印工艺参数与PLA制件力学性能指标的数学模型;通过对不同打印工艺参数的试样进行试验验证,表明该模型拟合误差小(5%以内),可靠性高,可用来对FDM 3D打印制件的加工提供参考。  相似文献   

13.
以聚乳酸(PLA)为基体,连续玻璃纤维为增强体,采用熔融浸渍工艺制备连续玻璃纤维预浸丝,将制得的预浸丝作为3D打印耗材用于熔融沉积(FDM)的3D技术来制备连续玻璃纤维增强PLA复合材料试样,并研究了打印温度、层厚和打印速度对复合材料力学性能的影响。结果表明,当打印层厚为0. 5 mm,打印温度为230℃,打印速度为2 mm/s时,连续玻璃纤维增强PLA复合材料的弯曲性能最佳,弯曲强度和弯曲模量分别为327. 84 MPa和20. 293 GPa。综合考虑复合材料的力学性能、表面质量和尺寸稳定性,连续玻璃纤维增强PLA复合材料的最佳打印层厚为0. 5 mm,适宜的打印温度范围为200~220℃,打印速度范围为2~4 mm/s。  相似文献   

14.
针对现有气道支架在临床应用时存在再狭窄发生率高、组织感染和容易移位等缺点,提出了一种基于3D打印技术的气道支架个性化定制方案.借助计算机进行三维建模,设计形状和尺寸与患者气道局部解剖结构精准匹配、具有3层结构和表面分布有钉状凸起的个性化气道支架模型.以医用级热塑性聚氨酯为材料,采用3D打印机制备气道支架,研究打印温度、...  相似文献   

15.
采用酰胺成核剂(NT–C)和聚乙二醇(PEG2000)对聚乳酸(PLA)进行熔融共混改性,制备了用于3D打印的PLA/NT–C/PEG2000共混物,并在200℃的温度下通过熔融沉积成型(FDM)工艺制备了共混物FDM打印件。研究了NT–C的用量对PLA/NT–C打印件结晶性能的影响,并在此基础上研究了PEG2000用量对共混物流变性能、共混物打印件的结晶性能和力学性能的影响。差示扫描量热分析表明NT–C可在一定程度上提高PLA/NT–C打印件的结晶度,一定用量的PEG2000的添加进一步提高了共混物打印件的结晶性能,当NT–C和PEG2000的质量分数分别为2%和5%时,打印件的结晶度达到17.1%,相比PLA提高了12倍;流变性能测试表明PEG2000提高了共混物的熔体流动速率,降低了共混物储能模量和损耗模量对温度的依赖性,扩宽了PLA在FDM工艺中的成型温度;力学性能测试表明PEG2000显著提高了PLA/NT–C/PEG2000共混物的缺口冲击强度,降低了打印中断丝的几率,FDM打印件弯曲和拉伸强度相比于PLA也有显著提高,当NT–C和PEG2000的质量分数分别为2%和5%时,打印件的弯曲和拉伸强度分别达到了注塑件的80%和70%以上,扩宽了PLA在FDM中应用。  相似文献   

16.
徐国忠  张振 《聚氯乙烯》2010,38(12):16-18,22
采用机械共混法制备了PVC与α-甲基苯乙烯类-丙烯腈共聚物(α-MSAN)共混材料,探讨了α-MSAN用量对共混材料的力学性能、耐热性能和加工性能的影响。结果表明:α-MSAN可以改善共混材料的耐热性能和加工性能;随着α-MSAN用量的增多,共混材料的热变形温度(最大弯曲正应力分别为1.80 MPa和0.45MPa)、拉伸强度、弯曲强度、弯曲模量和熔体流动速率上升,而冲击强度、断裂伸长率下降。综合考虑性能与成本等因素,α-MSAN用量为30份最佳,此时,共混材料的热变形温度由72.4℃提高至81.6℃(最大弯曲正应力为1.80 MPa)。  相似文献   

17.
研究了不同结构化控制剂搭配、硫化剂和减振填料用量对硅橡胶性能的影响,硫化时间、升温间隔对硅橡胶硫化效果的影响,脱模温度、放气量、工装设备对硅橡胶制品质量的影响。结果表明,采用高摩尔质量硅橡胶、气相法白炭黑,配合适量的结构化控制剂,可制备拉伸强度8 MPa以上、无结构化的硅橡胶;随着减振填料的大量填充,硅橡胶的力学性能呈下降趋势;随着硫化胶放气量的增加,大尺寸制品芯部有开裂的倾向。硅橡胶混炼胶用过氧化二异丙苯作硫化剂,采用分段升温、长时间硫化、保压降温工艺,可获得密实无缺陷的厚型制品。较佳工艺为:100份摩尔质量大于69×104g/mol的甲基乙烯基硅橡胶生胶、45份气相法白炭黑、6份羟基硅油、1份二甲基二乙氧基硅烷、1~2份DCP、2~5份氧化铁、10~40份减振填料,硫化时间选择厚制品157℃±1℃的传热时间,分段升温值15℃、升温间隔时间10~20 min、平均升温速率0.75℃~1℃/min,脱模温度根据制品厚度选择室温~80℃,放气量0.20%~0.27%,模具采用大间隙和小溢料槽。  相似文献   

18.
基于微注射成型的微连接器工艺实验研究   总被引:1,自引:0,他引:1  
基于正交实验设计方法,对微连接器在不同的微注射成型工艺参数下的充填情况进行研究,选择制品的质量作为实验指标,确定模具温度、熔体温度、注射速度、保压压力、保压时间、冷却时间等6个工艺参数为实验因素,通过对实验数据进行极差分析,得到了各因素对指标值的影响的主次顺序。实验结果表明,模具温度是影响制品质量精度的主要工艺参数因素,而冷却时间的影响最小。通过因素水平影响趋势图分析,得出了微连接器的最优工艺参数组合方案为模具温度80 ℃、熔体温度335 ℃、注射速度100 mm/s、保压压力20 MPa、保压时间1.5 s、冷却时间3.0 s,为微型器件生产中的工艺设计提供了理论依据和实际指导。  相似文献   

19.
无规共聚聚丙烯管力学性能影响因素的研究   总被引:1,自引:0,他引:1  
采用挤出成型生产出无规共聚聚丙烯管材,讨论了塑化温度、螺杆转速和冷却水温度等挤出成型工艺条件对无规共聚聚内烯管材力学性能的影响.结果表明:当平均塑化温度为210 ℃、螺杆转速为40~45 r/min、冷却水温度为20~30℃时,无规共聚聚丙烯管材具有较理想的力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号