首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
选取合理的采掘破碎工艺参数和喷嘴结构参数,是实现海洋天然气水合物(以下简称水合物)藏固态流化商业化采掘的关键之一。为了分析实际工程中影响水合物射流破碎效率的因素,依托室内实验和中国南海北部荔湾3站位现场试采取得的数据,以产气量12×10~4 m~3/d作为水合物商业开采目标,采用k—ε湍流模型开展了不同喷嘴直径、泵压等参数情况的仿真模拟分析。研究结果表明:(1)确定了水合物射流破碎临界速度为24 m/s时的喷嘴直径、泵压、排量关系曲线;(2)满足商业开采的单日水合物沉积物采掘量的破碎速度为2.48 m~3/min,其所对应的射流破碎孔径为800mm;(3)在喷嘴直径确定的情况下,直接提升射流排量和泵压会对工艺流程中其他零部件造成一定的损害。结论认为,所优选出的海洋非成岩水合物藏固态流化商业化采掘破碎的设计参数,为固态流化开采水合物破碎参数的优化设计提供了帮助。  相似文献   

2.
针对海洋天然气水合物开发技术与常规海洋油气开发技术的异同,分析了海洋天然气水合物储层特性和试采面临的挑战,介绍了天然气水合物试采关键技术,包括控压钻井技术、套管钻井技术、抑制性钻井液、钻井液冷却系统、低温低放热水泥浆体系、完井技术、开采方式优选和储层及环境监测技术等,指出了我国海洋天然气水合物试采应围绕水合物物理力学性质、安全成井、连续排采与防砂、开采方法适应性评价、试采过程储层参数和地层形变监测等技术难题开展研究,通过示范工程,形成海洋天然气水合物试采技术体系,为我国海洋天然气水合物的高效开发提供技术支撑。   相似文献   

3.
海洋天然气水合物固态流化开采大型物理模拟实验   总被引:5,自引:0,他引:5  
天然气水合物是继页岩气、致密气、煤层气等之后潜力巨大的接替能源,国内外天然气水合物开采技术研究和试采工程以降压法为主,均借鉴常规油气开采工艺,由于试采时间短,回避了长期开采存在的环境安全、装备安全、生产安全以及工程地质等风险。为此,由西南石油大学、中国海洋石油集团有限公司、四川宏华石油设备有限公司等单位组成的联合项目组历经多年协同攻关,提出了海洋非成岩天然气水合物固态流化开采原理,发明了基于该原理的模拟实验方法和技术,研制和开发了具有完全自主知识产权的全球首个海洋天然气水合物固态流化开采大型物理模拟实验系统。基于上述实验系统,开展了与海洋非成岩天然气水合物固态流化开采相关的天然气水合物样品快速制备、高效破碎及管道输送等物理模拟实验,验证了海洋非成岩天然气水合物固态流化开采相关理论模型的准确性,揭示了海洋非成岩天然气水合物固态流化开采过程中关键参数的变化规律。该项研究成果为全球首次海洋天然气水合物固态流化试采的成功开展奠定了重要的基础。  相似文献   

4.
基于我国海域天然气水合物钻探取样储层具有埋深浅、无致密盖层、非成岩、弱胶结、易于碎化等特点,提出了针对深水浅层非成岩天然气水合物固态流化试采方案,其核心思想是将深水浅层非成岩天然气水合物矿体通过机械破碎流化转移到密闭的气、液、固多相举升管道内,利用举升过程中海水温度升高、静水压力降低的自然规律使水合物逐步气化,变非成岩天然气水合物分解过程的不可控为可控,实现深水浅层天然气水合物安全试采;其工程实施策略为目标勘探确定井位、随钻测井证实水合物层位、钻探取样及分析作为试采实施依据,即在钻探取样获取岩心后确定水合物有效层位,依托深水工程勘察船、采用无隔水管钻杆钻进至水合物层后固井并建立井口,采用自主的井下喷射工艺使含水合物沉积物在举升过程中自然分解,利用密度差实现部分砂回填,其余气、液、固流化物返回地面测试流程,经过高效分离、气体储集、放喷等技术实现快速点火测试。2017年5月,中国海油在南海北部荔湾3站位依托深水工程勘察船"海洋石油708",利用完全自主研制技术、工艺和装备,在水深1 310 m、水合物矿体埋深117~196 m处,在全球首次成功实施海洋浅层非成岩天然气水合物固态流化试采作业,标志着我国已在具有自主知识产权的天然气水合物勘探开发关键技术上取得历史性突破。  相似文献   

5.
海洋非成岩天然气水合物藏固态流化采空区安全性评价   总被引:2,自引:0,他引:2  
为了解决固态流化法开采海洋非成岩天然气水合物(以下简称水合物)采空区安全性如何评估的问题,以中国南海神狐海域的水合物藏为例,根据水合物射流破碎流化开采工艺及流程,基于圣维南原理建立了采空区有限元模型并进行了网格精度验证,采用研究区水合物藏的物性参数和力学特征参数,模拟分析了垂直和水平采空区的稳定性问题,并探索了海洋非成岩水合物稳定层采空区的安全评价方法。结果表明:(1)基于圣维南原理建立的海底采空区有限元分析模型能够保证计算精度且计算工作量不大;(2)垂直采空区最大偏应力随采空区直径的增加呈现出先快速增加后缓慢增加的趋势,最大应变则随采空区直径的增加而呈线性增加;(3)垂直采空区的安全问题主要受到应力水平的控制,采空区直径不宜超过800 mm;(4)水平采空区最大偏应力和最大应变均随水平采空区直径的增加而呈现出单调增加的趋势。结论认为:垂直采空区的直径可以达到比较大的临界值,其安全性主要属于采空区井壁强度问题;而水平采空区的临界直径值则比较小,其安全性主要属于采空区稳定性问题。  相似文献   

6.
天然气水合物试采期间,储层分解可能导致井筒失稳,井筒中水合物的二次生成易造成管柱堵塞、套管破坏、井喷等生产事故。基于1965年前苏联陆地冻土天然气水合物试采到我国南海海域天然气水合物试采所取得的成果,分析了热注法、降压法、化学剂注入法、气体置换法等试采方法的原理、应用及其优缺点,同时介绍了近年水合物试采实验研究新方法新理论。分析表明,降压法是目前水合物试采中最成熟的试采方法,建议与其他试采方法联合使用,进一步提高天然气水合物的试采产量。  相似文献   

7.
天然气水合物(以下简称水合物)分别蕴藏于海洋和陆地永冻土带中,但前者的储量约为后者的100倍。海洋环境中的大部分脉状、块状水合物以及细粒沉积物中的水合物都属于非成岩天然气水合物,一般没有像常规油气藏和砂岩水合物储层那样稳定的圈闭构造。针对海洋非成岩水合物的物理特征、成藏特点,依据水合物固态流化开采法的工艺流程,建立了世界首个海洋天然气水合物固态流化开采实验室。该实验室定位于全自动化的白领型实验室,实验系统共分为大样品快速制备及破碎、高效管输、高效分离、快速检测等模块单元。该实验室的主体功能包括:(1)高效破岩能力评级;(2)海洋天然气水合物层流化试采携岩能力评价;(3)水合物非平衡分解规律及流态动变规律评价;(4)不同机械开采速率条件下水合物安全输送;(5)井控安全规律模拟。该实验室的关键技术指标:工作压力12 MPa、水平管长度65 m、立管长度30 m、管径3英寸。该实验室能模拟1 200 m水深的全过程水合物固态流化开采工艺过程,是西南石油大学联合中国海洋石油总公司、宏华集团原始创新自主设计、自主研发的标志性实验室。  相似文献   

8.
深水浅层天然气水合物固态流化绿色开采技术   总被引:7,自引:0,他引:7  
天然气水合物主要分布在极地和深水陆坡区,约95%储存在深水区,目前冻土和海域试采目标区为成岩天然气水合物矿体并多伴有下覆游离气,可采用降压、注热、注剂和CO_2置换等方法进行开发;储存在深水浅层的细粒裂隙型、分散型天然气水合物虽总量大,但因其埋深浅、非成岩、胶结性差,开采方法尚属空白。根据世界其他海域和我国海域天然气水合物取样进展,首次提出了深水浅层天然气水合物固态流化绿色开采技术,即将深水浅层不可控的非成岩天然气水合物藏通过海底采掘、密闭流化、气液固多相举升系统变为可控的天然气水合物资源,从而保证生产安全,减少浅层水合物分解可能带来的环境风险,达到绿色可控开采的目的。文中重点论述了该技术提出的背景、技术原理、数学分析方法及主要技术核心等,以期为深水浅层天然气水合物开采提供借鉴。  相似文献   

9.
固态流化采掘海洋天然气水合物藏的多相非平衡管流特征   总被引:1,自引:0,他引:1  
由密闭管线将破碎的海洋天然气水合物(以下简称水合物)颗粒向上输送至海面平台,是固态流化采掘水合物藏工艺流程的核心环节,但水合物固相颗粒在上升过程中受到温度升高、压力降低的影响,至某一临界位置将会分解产生大量气体,使井筒中的流动变为复杂多相非平衡管流,进一步加剧了井控、固相输送等安全风险。为了研究水合物在上述过程中的动态分解规律,通过建立井筒温度和压力场、水合物相平衡、多相上升管流中的水合物动态分解、耦合水合物动态分解的井筒多相流动数学模型,提出了数值计算方法并予以验证。研究结果表明:(1)应用数值模型分析,得到了不同施工参数条件下的液相排量、固相输送量(日产气量)、井口回压对多相非平衡管流的影响规律;(2)提出了基于多相非平衡管流特征的现场施工措施,适当提高固相输送量可以提高天然气产量,应同时增大液相排量、施加井口回压来保障井控安全。结论认为,该项研究成果为施工参数优化和井控安全提供了技术支撑,也为其他海区水合物藏固态流化采掘多相非平衡管流预测提供了手段。  相似文献   

10.
为了弄清在固态流化采掘条件下,海洋非成岩天然气水合物(以下简称水合物)藏固相颗粒在水平管段内的运移规律,基于液固两相流模型,采用Fluent软件耦合EDEM软件模拟了在水平管段不同液相速度、不同粒径、不同丰度下的水合物固相颗粒运移特征,并采用大型固态流化采掘物理实验模拟工具对数值模拟结果进行验证。研究结果表明:(1)单颗粒水合物在水平管段中的运移方式以跃移和蠕移为主,水合物颗粒群在水平管段中的运移方式受水合物丰度、液相速度、管径、水合物固相颗粒粒径影响较大;(2)当水合物丰度较低、颗粒粒径较大、液相流速较低时,固相颗粒运移方式主要以跃移、蠕移为主;(3)当水合物丰度较高、颗粒粒径较小、液相流速较大时,固相颗粒运移方式主要以悬移为主;(4)提高液相进口速度是提高水平管内净化效果的有效手段。结论认为:(1)选取破碎效果较好的二级破碎工具可以提高水平管段固相颗粒群的净化效果;(2)水合物固态流化开采水平管段内压力降主要受液相流速影响较大,在满足举升泵设备负荷前提下,应调整注入排量来达到合适的液相流速。  相似文献   

11.
南海神狐海域天然气水合物降压开采过程中储层的稳定性   总被引:5,自引:0,他引:5  
储层稳定性是天然气水合物(以下简称水合物)开采所面临的关键问题之一,也是确保水合物安全高效开采的前提,目前相关的研究较少。为了分析降压法开采南海神狐海域水合物过程中储层的稳定性,根据该海域水合物的钻探资料,建立三维水合物降压开采地质模型,采用非结构网格对模型进行离散;在综合考虑水合物开采过程中的传热传质过程和沉积物变形过程的基础上,建立了热—流—固—化四场耦合的数学模型;基于非结构网格技术,采用有限单元方法对模型求解,获得水合物降压开采条件下的储层孔隙压力、温度、水合物饱和度和应力的时空演化特征,进而分析研究了该海域水合物降压开采过程中储层沉降、应力分布和稳定性。结果表明:(1)储层渗透率越大、井底降压幅度越大,沉降量越大,沉降速度越快;(2)开采过程中储层孔隙压力减小会导致有效应力增加,且近井处剪应力增加较明显,易发生剪切破坏;(3)储层有效应力的增加导致了储层沉降,沉降主要发生在开采的早期,开采60 d,储层最大沉降为32 mm,海底面最大沉降为14 mm。结论认为,南海神狐海域水合物储层渗透率低,储层压力降低的影响范围有限,在60 d的开采时间内,储层不会发生剪切破坏。  相似文献   

12.
高德利 《天然气工业》1981,40(8):169-176
中国南海的石油天然气资源十分丰富,但其大多数都埋藏于深水区,油气勘探开发工作面临着许多难题和挑战。历经多年的探索与实践,我国海洋油气钻探工程已经实现了从浅水(水深300 m以内)到超深水(水深超过1 500 m)的跨越,并在南海发现了丰富的天然气与海域天然气水合物(以下简称水合物)资源,亟待进行安全高效开发,因而对相应的天然气及其水合物高效开发模式与技术支撑体系提出了迫切的需求。为此,针对深海天然气及其水合物安全高效开发的重大课题,提出了适用于常规天然气的“水平井或复杂结构井浮式钻完井+水下钻采系统+浮式生产、集输与浮式液化天然气生产储卸装置(FLNG)处理系统+船运外输”的开发模式及其技术支撑体系,以及适用于非常规天然气——海域天然气水合物的“水平井或复杂结构井浮式钻完井+水合物原位分解开采+水下或浮式生产与集输处理系统+管道或船运外输”的开发模式及其技术支撑体系;论述了大位移井、“U”形井等先进井型的开发模式及其适用的海洋地质环境,并给出了“U”形井的连通控制模型;此外,还介绍了与深水钻井力学和设计控制技术相关的研究进展。结论认为,建立先进适用的工程模式及其技术支撑体系,寻求实现“地质—工程—市场”一体化的解决方案,同时加强相关的信息化与智能化建设,是深海天然气及其水合物安全高效开发的关键之所在。  相似文献   

13.
天然气水合物开采过程中,厘清储层力学参数的演化特征是进行工程地质风险评估的基础,但目前针对中国南海含天然气水合物泥质粉砂储层力学性质评价与测试相关研究的报道却鲜见。为此,以南海北部神弧海域W18/19矿体天然气水合物顶界沉积物为研究对象,用四氢呋喃(THF)水合物代替天然气水合物,以此来探讨泥质粉砂沉积物—天然气水合物混合体系的力学参数演化特征。研究结果表明:①在低质量丰度条件(小于等于16.7%)下泥质粉砂沉积物—天然气水合物混合体系呈现应变硬化破坏特征,抗剪强度、切线模量、内聚力随着水合物含量的增大而增大;②纯天然气水合物的应力—应变曲线表现出明显的脆性破坏特征,与低丰度条件下的泥质粉砂沉积物—天然气水合物混合体系破坏特征截然不同。进而提出了采用丰度(质量丰度或体积丰度)代替原有的砂质沉积物中饱和度概念来表征天然气水合物含量的建议,在考虑天然气水合物合成结束后泥质粉砂沉积物含水率影响的基础上,将泥质粉砂型天然气水合物—沉积物混合体系划分为纯沉积物、含天然气水合物沉积物、含沉积物天然气水合物和纯天然气水合物4种基本类型,以克服目前针对含天然气水合物泥质粉砂储层力学性质研究中所存在的不足。  相似文献   

14.
天然气水合物射流破碎工具及其配套工艺技术   总被引:1,自引:0,他引:1  
针对中国海洋天然气水合物(以下简称水合物)储藏埋藏浅和胶结性弱的特点,急需开发一系列保障水合物安全、经济、绿色、高效开采的工艺技术和配套工具。为此,提出了一种在不改变水合物储层温度和压力条件下的射流破碎流化开采水合物的技术思路,同时,开展了射流破碎水合物配套喷嘴工具的设计、室内实验与优化。进而基于室内实验探索了喷嘴射流破碎工作压降、排量、上提下放喷嘴速度和趟数等施工参数与破碎水合物孔眼直径和破碎速率之间的关系,建立了水合物射流破碎流化开采工艺现场施工工程图版。在中国南海荔湾3井采用该方法进行了生产验证。结果表明:(1)水合物射流破碎流化开采工艺技术提高了水合物开采生产效率、保护了储层底层安全,降低了水合物开采能耗;(2)水合物射流破碎喷嘴工具破碎形成的孔径规整、破碎颗粒返排效果好,无领眼时喷嘴射流破碎下放速度不超过7.1 m/h;(3)水合物射流破碎流化开采工程图版解释了射流破碎工况和施工参数对射流破碎水合物孔径和破碎速率的影响规律,为水合物试采施工工艺参数选择提供了参考;(4)水合物射流破碎流化工艺在荔湾3井试采成功,验证了射流破碎流化开采工艺的可行性和其应用于水合物商业开采的广阔前景。  相似文献   

15.
为了弄清在固态流化采掘条件下,海洋非成岩天然气水合物(以下简称水合物)藏固相颗粒在水平管段内的运移规律,基于液固两相流模型,采用Fluent软件耦合EDEM软件模拟了在水平管段不同液相速度、不同粒径、不同丰度下的水合物固相颗粒运移特征,并采用大型固态流化采掘物理实验模拟工具对数值模拟结果进行验证。研究结果表明:①单颗粒水合物在水平管段中的运移方式以跃移和蠕移为主,水合物颗粒群在水平管段中的运移方式受水合物丰度、液相速度、管径、水合物固相颗粒粒径影响较大;②当水合物丰度较低、颗粒粒径较大、液相流速较低时,固相颗粒运移方式主要以跃移、蠕移为主;③当水合物丰度较高、颗粒粒径较小、液相流速较大时,固相颗粒运移方式主要以悬移为主;④提高液相进口速度是提高水平管内净化效果的有效手段。结论认为:①选取破碎效果较好的二级破碎工具可以提高水平管段固相颗粒群的净化效果;②水合物固态流化开采水平管段内压力降主要受液相流速影响较大,在满足举升泵设备负荷前提下,应调整注入排量来达到合适的液相流速。  相似文献   

16.
南海北部神狐海域是我国海域天然气水合物(以下简称水合物)研究的热点区域,但该区域水合物储集体类型及特征尚未得到充分的认识。为此,在对不断积累的资料进行分析总结的基础上,基于高分辨率三维地震资料精细解释、岩心沉积物粒度参数描述和粒度C—M模式分析,系统探讨了该海域含水合物层与上覆不含水合物层沉积物的成因机制,分析了含水合物层沉积物粒度参数与水合物饱和度的关系,并初步揭示了深水沉积与水合物藏分布的耦合关系。研究结果表明:①该区水合物赋存在南海北部陆坡峡谷脊部和下游段—嘴部的细粒浊积体中,含水合物细粒浊积体和上覆不含水合物层的沉积物具有不同的粒度参数特征和显著的沉积成因差异;②与峡谷脊部细粒浊积体相比,峡谷下游段—嘴部的细粒浊积体中可能存在着不同成因类型的沉积物夹层,其沉积过程具有复杂性和多期性;③含水合物层的粒度分选系数与水合物饱和度关联性最大,其次为偏度,粒度参数可能通过影响储层物性进而控制水合物饱和度;④气烟囱、断层等流体运移通道和细粒浊积体共同构成水合物的“运聚体系”。结论认为,细粒浊积体和气烟囱构造的空间匹配是神狐海域水合物不均匀性分布的关键控制因素,“水合物运聚体系”控制水合物成藏的模式将有助于进一步理解深水沉积与水合物成藏的关联性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号