首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
LNG储罐冷却过程中会产生大量的BOG,怎样合理回收尤为重要。以大连LNG接收站3号储罐冷却为基础计算出其实际的BOG回收量,然后对冷却过程中的工艺和操作进行适当改进,并计算出最大回收量及最大回收时所需的LNG最小外输流量。通过对比,改进后的回收量是实际回收量的1.64倍,有效降低了BOG排放量。  相似文献   

2.
为对LNG接收站生成的BOG进行外输处理以降低储罐压力确保其安全运行,介绍了LNG接收站BOG产生的原因并计算出各种情况下BOG的产生量,以此为基础探讨了LNG接收站间断外输期间进行BOG外输处理控制储罐压力的不同方式。通过对比BOG高低压外输、再冷凝高低压外输和BOG通过火炬及安全阀放空几种控制方式的能耗,结合现阶段接收站间断外输的实际工况,分析得出使用BOG再冷凝低压外输工艺为目前工况下的最佳控制处理方式。  相似文献   

3.
LNG接收站BOG处理技术优化   总被引:2,自引:0,他引:2  
LNG接收站BOG处理工艺分再冷凝和高压压缩两种,均有其不足。就再冷凝工艺而言,接收站无外输时BOG只能采取放空或火炬燃烧等措施进行处理;就高压压缩工艺而言,接收站外输期时无法回收LNG的冷能。为此,分别采用静态模型、动态模型等计算方法分别计算无外输期和有外输期间最大BOG产生量,弄清各种工况下BOG的产生量。在此基础上,从BOG产生的机理出发,分析降低接收站产生BOG的措施。结果表明,优化BOG压缩机组合可有效回收产生的BOG。建议在接收站设计、建设过程中,应综合考虑再冷凝工艺和直接压缩机工艺,采取措施降低BOG的产生,实现BOG的有效回收利用。  相似文献   

4.
地上全容式混凝土顶LNG储罐的冷却动态模拟   总被引:1,自引:0,他引:1  
LNG储罐冷却是LNG接收站投产过程中风险最高、难度最大的环节,为了合理地控制冷却速度、储罐压力,以及选择适当的环境温度以降低BOG的排放量,对地上全容式混凝土顶LNG储罐的冷却过程进行了动态模拟。基于质量、能量守恒原理建立了LNG储罐冷却计算模型,根据甲烷特性参数及大连LNG接收站实际冷却情况确定了冷却计算模型中的相关参数,进而分析了LNG储罐冷却过程中冷却速度、环境温度、储罐压力与LNG需求量、BOG排放量之间的变化规律。结果表明:①随着冷却速度的增大,LNG需求量、BOG排放量逐渐减小,相同储罐温度下,LNG流量逐渐增加,排放BOG流量逐渐减小;②随着环境温度的增大,LNG需求量和流量逐渐增加,BOG排放量和流量也逐渐加;③储罐压力对LNG需求量和BOG排放量影响较小。据此,提出建议:①在LNG接收站对储罐进行冷却时应尽量选择在环境温度较低的冬季,以降低BOG的排放量;②在确保罐内温差正常的情况下,可尽量提高储罐冷却速度至-5 K/h,以便减少BOG的排放量,达到节能减排的目的。  相似文献   

5.
LNG储罐与管道的冷却是LNG接收站投入运营前最重要的环节之一,建立LNG储罐冷却控制模型,对现场储罐温降数据进行监控和分析以指导储罐冷却操作,使LNG储罐冷却速率控制在合理范围内,可实现储罐的平稳冷却。针对不同的冷源总结LNG管道冷却操作方法,重点研究液氮冷却LNG接收站卸料管道温降规律,提出采用"间歇式"液氮预冷方法代替BOG预冷方法对卸料管道进行预冷,可以改变管道内部气体的流通速度,使管道上下温差控制在设计值以内以达到均匀混合的目的。此方法可以减少BOG的排放,节省调试时间与费用。LNG储罐冷却控制模型与LNG管道液氮冷却方法在已投产项目调试中均得到了良好实践和应用,可供LNG行业操作人员参考。  相似文献   

6.
一般LNG接收站产生的BOG中含有大量的氮气,热值低,若直接压缩成CNG则严重影响汽车的动力性能;若利用再冷凝工艺采用低温BOG压缩机,因低温BOG压缩机太昂贵,对于小型LNG接收站来说不经济。为此提出一种常温压缩再冷凝的BOG回收工艺,即先将BOG加热到常温再增压,自身预冷回收冷量后再和增压后的过冷LNG混合液化,即可得到合格的LNG,其氮气、甲烷含量和热值均满足要求。通过HYSYS软件模拟,证明采用这种工艺流程完全可以回收一些小型LNG接收站产生的BOG,避免了BOG资源的浪费。  相似文献   

7.
随着环境保护的需要和能源的日益紧张,国内液化天然气(LNG)行业发展速度越来越快.LNG气化产生蒸发气(BOG),若不对其进行处理,可能造成接收站超压继而引发事故;若对其直接放空至火炬燃烧,则不仅浪费了能源,同时又污染了环境.因此,BOG回收工艺成为LNG接收站的重要组成部分.BOG回收处理方法主要有2大类,即加压外输方法和再液化方法.由于不同规模的LNG接收站产生的BOG蒸发量不同,致使各LNG接收站的BOG回收工艺各不相同,本文主要针对直接压缩工艺、再冷凝液化工艺、直接压缩+再冷凝工艺、氮膨胀制冷液化工艺、混合冷剂制冷液化工艺、液氮(或丙烷)制冷液化工艺、蓄冷式再液化工艺7种BOG回收技术的适用条件、工艺流程及优缺点进行评述,并提出有针对性的优化建议.  相似文献   

8.
随着环境保护的需要和能源的日益紧张,国内液化天然气(LNG)行业发展速度越来越快.LNG气化产生蒸发气(BOG),若不对其进行处理,可能造成接收站超压继而引发事故;若对其直接放空至火炬燃烧,则不仅浪费了能源,同时又污染了环境.因此,BOG回收工艺成为LNG接收站的重要组成部分.BOG回收处理方法主要有2大类,即加压外输方法和再液化方法.由于不同规模的LNG接收站产生的BOG蒸发量不同,致使各LNG接收站的BOG回收工艺各不相同,本文主要针对直接压缩工艺、再冷凝液化工艺、直接压缩+再冷凝工艺、氮膨胀制冷液化工艺、混合冷剂制冷液化工艺、液氮(或丙烷)制冷液化工艺、蓄冷式再液化工艺7种BOG回收技术的适用条件、工艺流程及优缺点进行评述,并提出有针对性的优化建议.  相似文献   

9.
《天然气化工》2016,(1):48-50
BOG估算量影响压缩机、再冷凝器、低压泵、火炬等关键设备的配置,是LNG接收站工艺计算的核心部分之一。LNG接收站BOG量的静态计算方法被用于在设计前期阶段保守估算BOG量,此法通过调整可适用于多种规模类型的LNG接收站,也适用与浮式气化船和陆上储罐相结合的接收终端类型。  相似文献   

10.
张圆 《石化技术》2018,(11):15-16
目前全国LNG接收站大多采用再冷凝器工艺回收BOG,但整个BOG回收工艺中存在很多的控制技巧和难点。针对此问题对唐山LNG接收站再冷凝器控制进行分析,提出用减少BOG产生、降低进入再冷凝器的BOG温度等措施提高再冷凝器的处理能力和控制的平稳性,保证系统安全运行。  相似文献   

11.
在LNG接收站开车、运行过程中,BOG管网进液可能导致BOG再冷凝系统停车、LNG储罐超压损坏、火炬火雨等严重后果。对LNG接收站BOG管网的潜在进液点进行了分析,讨论了进液危害及应对措施,并从设计、操作管理等方面提出优化措施,为LNG接收站工程设计、开车预冷、运维等提供参考和实践指导。  相似文献   

12.
浙江LNG接收站卸料管线BOG预冷模拟研究   总被引:1,自引:0,他引:1  
由于LNG的低温特性,在其首次进入接收站工艺系统前,需要先对LNG卸料管线采用低温LNG蒸气(BOG)预冷至-120 ℃,然后再引入LNG将卸料管线冷却至-150 ℃。卸料管线预冷是确保LNG接收站顺利投产试运行的重点工作。为此,以浙江LNG接收站为例,采用自编程序建模,针对管径为1 000 mm长距离LNG卸料管线的BOG预冷过程,建立了一维流动传热模型,借助MATLAB工具模拟了BOG预冷LNG接收站卸料管线的整个过程,结果显示:卸料管线壁面温度下降速率最大不超过10 ℃/h,计算时间步长取10 s,计算得出737 m的LNG卸料管线冷却到-120 ℃左右所需时间为30.25 h。同时还分析了不同因素对卸料管线预冷过程的影响,结果显示:①冷却用BOG流量随着时间的推移逐渐增大,在冷却结束阶段,BOG流量达40.95 kg/s,累积BOG消耗量为14 330 kg;②管道内BOG流速随冷却时间增加而增大;③管道内BOG压力随冷却时间及管道长度的增加而减小。建议实际操作中,将管线冷却至-100 ℃即可进入LNG冷却阶段,可节省整个管线的冷却时间及BOG用量。  相似文献   

13.
储罐冷却是LNG储罐调试工作中最关键和最危险的环节之一。针对国内首个浮式LNG接收站3×10~4 m~3LNG储罐冷却过程,进行了冷却方案比选,提出了预冷用LNG量的计算方法,介绍了冷却条件及冷却过程。针对冷却过程中出现的常规问题及非常规问题进行了分析并给出相应的解决方案。研究成果对其他浮式或常规LNG接收站中LNG储罐的冷却具有参考意义。  相似文献   

14.
为了解决LNG接收站在低输量工况下闪蒸气(Boil-Off Gas,以下简称BOG)回收不完全的问题,在不增加冷凝工艺复杂性的前提下,基于现有设备的实际工况及工艺流程,以热力学原理、静态仿真计算结果为依据,在传统的蓄冷式BOG冷凝方案的基础上,结合LNG冷能利用方式,提出了一种基于LNG接收站制氮系统的蓄冷回收BOG新工艺,并进行了BOG温度、冷凝器入口压力、LNG组分等参数的敏感性分析,明确了新工艺的适用条件。运用效果表明:(1)新工艺充分利用了LNG接收站的现有设备,每年可为LNG接收站节能创收近160万元;(2)新工艺可实现高负荷下的BOG冷凝,其冷凝外输工艺可作为辅助冷凝工艺,冷凝回罐工艺可作为应急工艺——液氮用于蓄冷、气氮用于吹扫,可满足接收站的多种需求;(3)较之于前人提出的4种BOG处理工艺(多级压缩、级间冷却、预冷和透平回收轴功),新工艺在对外输量的依赖性、流程安全性及操作性等方面均有优势。结论认为:新工艺在设备投资、能耗、工艺安全性及经济效益上都具有明显的优势,值得推广应用。  相似文献   

15.
LNG接收站BOG处理工艺优化——以青岛LNG接收站为例   总被引:2,自引:0,他引:2  
蒸发气(Boil Off Gas,缩写为BOG)的处理是LNG接收站必须考虑的关键问题之一,关系着LNG接收站的能耗及安全、平稳运行。为此,介绍了LNG接收站BOG处理的4种工艺:①BOG直接压缩工艺;②BOG再冷凝液化工艺;③BOG间接热交换再液化工艺;④蓄冷式BOG再液化工艺。运用HYSYS软件建立了采用不同BOG处理工艺的LNG接收站模型,对比了目前主要采用的BOG直接压缩工艺和再冷凝液化工艺在工艺流程及能耗方面的差异,并分析了外输量、外输压力及再冷凝器压力对BOG处理工艺节能效果的影响,在此基础上提出了BOG再冷凝液化工艺的改进措施——BOG进入再冷凝器前进行预冷,可比原工艺节约18.2%的能耗。同时还针对青岛LNG接收站提出了BOG再冷凝液化及直接压缩工艺混合使用的优化运行方案,可使进入再冷凝器的LNG流量保持恒定,没被冷凝的BOG经过高压压缩机提压到外输压力,与完成气化的LNG混合后外输,可避免BOG进入火炬系统而造成的能源浪费,同时减小再冷凝器入口流量的波动,使装置运行更稳定、更经济。  相似文献   

16.
文章对LNG储罐压力控制及联锁保护系统的组成和理念进行了分析,考虑不同工况下,当储罐超压时,对储罐吸热等原因引起的BOG蒸发量进行了计算,当储罐负压时,对储罐需要的补气量进行了计算,并根据计算结果对接收站BOG压缩机、LNG储罐安全阀(PSV)、真空阀(VSV)的设计参数进行了确定。  相似文献   

17.
目的 以LNG作为气源供应的气化站或加气站,由于当前LNG卸车工艺原因,在LNG槽车卸车后,其储罐内仍残存一定量已付费却无法利用的BOG气体。针对此普遍问题,研究回收BOG的有效办法。方法 以某气化站为研究实例,通过计算LNG槽车储罐内可回收BOG量,结合回收BOG状态参数、气化站卸车和运行工艺流程,制定出相应的工艺改造方案。结果 模拟拟选主要设备运行工况,绘制出单级及两级压缩机排气量、功率随时间变化的状态图,以及槽车储罐内BOG压力、余量随时间变化的状态图,直观地比对出拟选型设备的功效。结论 在气化站回收LNG槽车BOG的工艺改造方案中,选用两级低温压缩机可有效减排和降低槽车卸车损耗,其更具优势。  相似文献   

18.
全容式LNG储罐是目前国内LNG接收站普遍采用的罐型,LNG储罐储存低温液体,内外温差大,罐体结构复杂,温度场分布对储罐的结构设计影响大。以国内某LNG接收站的全容式储罐为例,通过对储罐底部、罐壁和顶部结构及传热过程的分析,建立了罐体各部位温度场计算模型,利用ANSYS软件计算得到了LNG储罐罐顶、罐壁、罐底的温度场分布,并分析了计算结果。储罐结构设计时应考虑储罐绝热层与内罐体接触部位热应力影响;同时应优化储罐底部的结构,有效降低罐底漏热量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号