首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A scalable energy‐efficient MAC protocol is proposed for wireless sensor and actor networks (WSAN) to improve the network performance. Actor's placement has computed using midpoint K‐mean technique. These actors perform as the cluster heads and collect the information from its members. Cluster head computes the shortest path to all of its cluster members. Further, it divides the cluster into multiple subtrees and assigns a noninterference channel to every subtree. A token is assigned to each subtree for intracluster communication. Token handling and token processing mechanisms are proposed to transfer token from one node to next eligible node. Finally, a throughput‐based channel selection mechanism has proposed for actor‐actor communication. The proposed protocol is simulated in NS2 and compared with its competitive MAC protocols. The results describe that the existing protocols are out beaten by the proposed mechanism.  相似文献   

2.
Handling Mobility in Wireless Sensor and Actor Networks   总被引:1,自引:0,他引:1  
In Wireless Sensor and Actor Networks (WSANs), the collaborative operation of sensors enables the distributed sensing of a physical phenomenon, while actors collect and process sensor data and perform appropriate actions. WSANs can be thought of as a distributed control system that needs to timely react to sensor information with an effective action. In this paper, coordination and communication problems in WSANs with mobile actors are studied. First, a new location management scheme is proposed to handle the mobility of actors with minimal energy expenditure for the sensors, based on a hybrid strategy that includes location updating and location prediction. Actors broadcast location updates limiting their scope based on Voronoi diagrams, while sensors predict the movement of actors based on Kalman filtering of previously received updates. The location management scheme enables efficient geographical routing, and based on this, an optimal energy-aware forwarding rule is derived for sensor-actor communication. Consequently, algorithms are proposed that allow controlling the delay of the data-delivery process based on power control, and deal with network congestion by forcing multiple actors to be recipients for traffic generated in the event area. Finally, a model is proposed to optimally assign tasks to actors and control their motion in a coordinated way to accomplish the tasks based on the characteristics of the events. Performance evaluation shows the effectiveness of the proposed solution.  相似文献   

3.
Wireless sensor and actor networks (WSANs) can be considered as a combination of a sensor network and an actor network in which powerful and mobile actor nodes can perform application specific actions based on the received data from the sensors. As most of these actions are performed collaboratively among the actors, inter-actor connectivity is one of the desirable features of WSANs. In this paper, we propose a novel distributed algorithm for establishing a connected inter-actor network topology. Considering initially disjoint sets of actors, our algorithm first initiates a search process by using the underlying sensor network in order to detect the possible sub-networks of actors in the region. After these sub-networks are detected, our algorithm pursues a coordinated actor movement in order to connect the sub-networks and thus achieve inter-actor connectivity for all the actors. This coordinated movement approach exploits the minimum connected dominating set of each sub-network when picking the appropriate actor to move so that the connectivity of each sub-network is not violated. In addition, the approach strives to minimize the total travel distance of actors and the messaging cost on both sensors and actors in order to extend the lifetime of WSAN. We analytically study the performance of our algorithm. Extensive simulation experiments validate the analytical results and confirm the effectiveness of our approach.  相似文献   

4.
Current Internet of Things (IoT) development requires service distribution over Wireless Sensor and Actor Networks (WSAN) to deal with the drastic increasing of network management complexity. Because of the specific constraints of WSAN, some limitations can be observed in centralized approaches. Multi-hop communication used by WSAN introduces transmission latency, packet errors, router congestion and security issues. As it uses local services, a model of decentralized services avoids long path communications between nodes and applications. But the two main issues are then to design (1) the composition of such services and to map (2) them over the WSAN. This contribution proposes a model for decentralized services based on Resource Oriented Architecture in which their communications are designed thanks to an adaptation of Petri Network (1). In addition, the problem of decentralized service mapping and its deployment over a WSAN is successfully resumed by a Pseudo-Boolean Optimization in order to minimize network communication load (2). These contributions are presented using a proposed EMMA middleware as unifying thread.  相似文献   

5.
A group of wireless devices with the ability to sense physical events (sensors) or/and to perform relatively complicated actions (actors), is referred to as Wireless Sensor and Actor Network (WSAN). In WSANs, sensors gather information about the physical events, while actors perform appropriate actions upon the environment, based on the sensed data shared by sensors. In order to provide effective sensing and acting, a distributed local coordination mechanism is necessary among sensors and actors. In this work, we propose and implement two Fuzzy Based Actor Selection Systems (FBASS): FBASS1 and FBASS2. We focus on actor selection problem and implement two fuzzy-based system. The systems decide whether the actor will be selected for the required job or not, based on data supplied by sensors and actual actor condition. We use three input parameters for FBASS1: Type of Required Action (TRA), Distance to Event (DE) and Remaining Power (RP). In FBASS2, we add the Security (SC) parameter as additional parameter. The output parameter for both systems is Actor Selection Decision (ASD). The simulation results show that the proposed systems decide the actor selection in order to have short delays, low energy consumption and proper task assignment. Comparing FBASS1 with FBASS2, the FBASS2 is more complex than FBASS1, because it has more rules in FRB. However, FBASS2 is able to decide secure actor nodes, which makes the system more secure.  相似文献   

6.
When dealing with a Wireless Sensor and Actuator Network (WSAN) structure, one of the challenging problems is lack of flexibility in such network operations as establishment, management, and configuration. Software-defined Networking (SDN) is a promising technology for a simpler, more flexible, and less overworked network structure. Integration of SDN as a solution into the existing WSAN structures seems to be a strong candidate of deployment solutions for next generation WSAN systems. In order to get enhanced performance results for WSAN systems, we proposed an interface protocol, referred to as WSANFlow, which is responsible for all the communications between SDN controller (SDNC) and SDN-oriented end devices. The SDNC in this approach has the network intelligence and is capable of handling all the control and management operations related to the network. Thus, advanced communication operations can be managed and efficiently optimized efficiently by the SDN controller and then, subsequently, corresponding instructions can be delivered to end devices using the proposed WSANFlow protocol. In the study, we analyzed the proposed framework performance, in terms of power consumption ratio, throughput, and end to end delay metrics. Then, we compared the results with those of a ZigBee-based counterpart for different workloads such as; light, heavy and heavier load which modelizes a video stream of mild parameters. The results show that not only has the overall performance of the existing WSAN system been enhanced, but also control and management operations have been simplified by the proposed model.  相似文献   

7.
国家电网信息通信网络依靠两套运维系统,分别实现对信息网络与通信网络的故障定位与分析,然而通信网络故障往往会引发信息网络故障,如何高效精确地进行通信信息网络故障联合定位是亟需解决的问题.针对信息通信网络的联合故障定位问题,提出了基于二分图模型的故障联合定位算法.首先依据通信网网络节点的关联性对网络分簇,并将每一簇作为一个子域.其次在每个子域内建立基于二分图的故障关联影响模型,最终利用目标排序法并行地对多个子域内网络故障进行分析,从而实现通信信息网络关联故障高效精确的联合定位.实验结果表明,该联合故障定位分析方法的故障诊断率达85%~95%.  相似文献   

8.
Wireless sensor networks have attracted significant interest for various scientific, military, and e-health applications. Recently a new class of sensor networks ??sensor/actor networks?? has been introducing new research challenges due to the unique coordination requirements among sensors and actors. In sensor/actor networks, actors are the nodes that have the capability to move in the field, equipped with powerful devices and can respond to the events of interest. With this capability, autonomous operation of the network is possible without a centralized controlling mechanism. This, however, requires the network to apply cooperative mechanism to decide when and how monitoring is done to track the event and how the event will be responded. In this regard, little work has been done in terms of co-existing Push and Pull data flows in the network. In this paper, we propose an Adaptive Pull?CPush (APP) based Event Tracking approach that allows sensor-to-actor communication as well as actors coordination in response to the events occurred. APP proposes two models of sensors organization: region-based organization (RAPP) and neighbor-based organization (NAPP) to alert nodes in the vicinity of reported event. APP exploits the mobility of actor nodes to form dynamic responsibility clusters, thus ensuring an event specific response to emergencies. Routing in APP is based on Routing by Adaptive Targeting (RAT), which is a delay-constrained geographical routing protocol. Simulation results reveal significant performance improvement in terms of response time and energy conservation.  相似文献   

9.
In this paper, a delay and energy aware coordination mechanism (DEACM) has been devised for wireless sensor–actor networks. In DEACM, a two‐level hierarchical K‐hop clustering mechanism is used to organize the sensors and actors for communication. In the first level, sensors form a K‐hop cluster using actors as cluster heads, and sink is made as the cluster head in the second level to form a cluster among actors. Sensor nodes, which are 1‐hop away from the actors, also called as relay nodes are elected as backup cluster head (BCH) based on the residual energy and node degree. BCH collects the data from sensors when an actor is away to perform actions in the affected area. The scheme is evaluated through exhaustive simulation in NS2 along with other existing schemes. Different parameters like average event waiting time, event reliability, and average energy dissipation are compared, varying the number of sensors, actors, and data transfer rate. In general, it is observed that the proposed DEACM outperforms other existing schemes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Current routing protocols in wireless sensor and actor networks (WSANs) shows a lack of unification for different traffic patterns because the communication for sensor to actor and that for actor to actor are designed separately. Such a design poses a challenge for interoperability between sensors and actors. With the presence of rich-resource actor nodes, we argue that to improve network lifetime, the problem transforms from reducing overall network energy consumption to reducing energy consumption of constrained sensor nodes. To reduce energy consumption of sensor nodes, especially in challenging environments with coverage holes/obstacles, we propose that actor nodes should share forwarding tasks with sensor nodes. To enable such a feature, efficient interoperability between sensors and actors is required, and thus a unified routing protocol for both sensors and actors is needed. This paper explores capabilities of directional transmission with smart antennas and rich-resource actors to design a novel unified actor-oriented directional anycast routing protocol (ADA) which supports arbitrary traffic in WSANs. The proposed routing protocol exploits actors as main routing anchors as much as possible because they have better energy and computing power compared to constraint sensor nodes. In addition, a directional anycast routing approach is also proposed to further reduce total delay and energy consumption of overall network. Through extensive experiments, we show that ADA outperforms state-of-the-art protocols in terms of packet delivery latency, network lifetime, and packet reliability. In addition, by offer fault tolerant features, ADA also performs well in challenging environments where coverage holes and obstacles are of concerns.  相似文献   

11.
Yi  Dharma P.   《Ad hoc Networks》2007,5(1):35-48
Wireless sensor networks are often deployed in hostile environments and operated on an unattended mode. In order to protect the sensitive data and the sensor readings, secret keys should be used to encrypt the exchanged messages between communicating nodes. Due to their expensive energy consumption and hardware requirements, asymmetric key based cryptographies are not suitable for resource-constrained wireless sensors. Several symmetric-key pre-distribution protocols have been investigated recently to establish secure links between sensor nodes, but most of them are not scalable due to their linearly increased communication and key storage overheads. Furthermore, existing protocols cannot provide sufficient security when the number of compromised nodes exceeds a critical value. To address these limitations, we propose an improved key distribution mechanism for large-scale wireless sensor networks. Based on a hierarchical network model and bivariate polynomial-key generation mechanism, our scheme guarantees that two communicating parties can establish a unique pairwise key between them. Compared with existing protocols, our scheme can provide sufficient security no matter how many sensors are compromised. Fixed key storage overhead, full network connectivity, and low communication overhead can also be achieved by the proposed scheme.  相似文献   

12.
下一代通信网络中基于策略机制的无线资源管理   总被引:1,自引:0,他引:1  
下一代无线通信系统是一种异构的网络体系,集成多种无线接入技术(Radio Access Technology,RAT)的同时提供多种窄带和宽带多媒体业务。这样的网络环境需要先进的RRM方法来处理复杂多变的无线信道、网络资源的动态配置及保障不同特征业务的服务质量(QoS),给无线资源管理(Radio Resource Management,RRM)带来了巨大的技术挑战。本文通过引入对网络进行策略控制的思想,提出了一种基于策略机制的通用方法,致力于解决下一代异构(heterogeneous)网络中的无线资源管理。文中着重讨论了基于策略机制的网络接入控制、切换,以及基于策略机制的QoS管理,给出了各功能模块的工作原理和通信过程的分析与设计。  相似文献   

13.
Communication and Coordination in Wireless Sensor and Actor Networks   总被引:3,自引:0,他引:3  
In this paper, coordination and communication problems in wireless sensor and actor networks (WSANs) are jointly addressed in a unifying framework. A sensor-actor coordination model is proposed based on an event-driven partitioning paradigm. Sensors are partitioned into different sets, and each set is constituted by a data-delivery tree associated with a different actor. The optimal solution for the partitioning strategy is determined by mathematical programming, and a distributed solution is proposed. In addition, a new model for the actor-actor coordination problem is introduced. The actor coordination is formulated as a task assignment optimization problem for a class of coordination problems in which the area to be acted upon needs to be optimally split among different actors. An auction-based distributed solution of the problem is also presented. Performance evaluation shows how global network objectives, such as compliance with real-time constraints and minimum energy consumption, can be achieved in the proposed framework with simple interactions between sensors and actors that are suitable for large-scale networks of energy-constrained devices.  相似文献   

14.
The Internet of Things (IoT) is one of the paradigms related to the evolution of telecommunication networks which is contributing to the evolution of numerous use cases, such as smart city and smart agriculture. However, the current communication infrastructure and wireless communication technologies are not always able to guarantee a proper service for these IoT scenarios. Smart solutions are needed to overcome current terrestrial network limitations offering a cost-effective way to extend the current terrestrial network coverage. For example, temporary extensions “on-request” of the terrestrial infrastructure may be a viable solution to allow collecting data generated by nodes outside the current network coverage. Flying objects can help achieve this goal. Various studies supported the use of unmanned aerial vehicles (UAVs) as intermediate nodes between IoT devices and the network. However, such solutions have not been exhaustively tested yet in real-case scenarios. This paper proposes an efficient solution to collect data from multiple IoT sensors in rural and remote areas based on UAVs. It describes the implementation of the proposed UAV-based Long RangeWide Area Network (LoRaWAN) flying gateway able to collect data directly from LoRaWAN sensors during its flight, keep them stored in an onboard memory, and forward them at the end of its flying path to a platform where the authorized users can access them. A prototype of the gateway has been developed to assess the proposed solution through both indoor and outdoor tests aiming to test its feasibility both in terms of communication performance and UAV-required hardware resources.  相似文献   

15.
The technological integration of the Internet of Things (IoT)-Cloud paradigm has enabled intelligent linkages of things, data, processes, and people for efficient decision making without human intervention. However, it poses various challenges for IoT networks that cannot handle large amounts of operation technology (OT) data due to physical storage shortages, excessive latency, higher transfer costs, a lack of context awareness, impractical resiliency, and so on. As a result, the fog network emerged as a new computing model for providing computing capacity closer to IoT edge devices. The IoT-Fog-Cloud network, on the other hand, is more vulnerable to multiple security flaws, such as missing key management problems, inappropriate access control, inadequate software update mechanism, insecure configuration files and default passwords, missing communication security, and secure key exchange algorithms over unsecured channels. Therefore, these networks cannot make good security decisions, which are significantly easier to hack than to defend the fog-enabled IoT environment. This paper proposes the cooperative flow for securing edge devices in fog-enabled IoT networks using a permissioned blockchain system (pBCS). The proposed fog-enabled IoT network provides efficient security solutions for key management issues, communication security, and secure key exchange mechanism using a blockchain system. To secure the fog-based IoT network, we proposed a mechanism for identification and authentication among fog, gateway, and edge nodes that should register with the blockchain network. The fog nodes maintain the blockchain system and hold a shared smart contract for validating edge devices. The participating fog nodes serve as validators and maintain a distributed ledger/blockchain to authenticate and validate the request of the edge nodes. The network services can only be accessed by nodes that have been authenticated against the blockchain system. We implemented the proposed pBCS network using the private Ethereum 2.0 that enables secure device-to-device communication and demonstrated performance metrics such as throughput, transaction delay, block creation response time, communication, and computation overhead using state-of-the-art techniques. Finally, we conducted a security analysis of the communication network to protect the IoT edge devices from unauthorized malicious nodes without data loss.  相似文献   

16.
Network address hopping (NAH) proposed a mechanism to enhance data protection in communications across untrusted networks. It spread the data stream of a communication session across multiple channels, which tried to obstruct information interception in the first place by obscuring the fact that communication takes place between certain end-points. However, the time-stamped packets between two peers would provide a hint for correlating the intercepted packets in case the encryption of the counter got compromised. Furthermore, due to synchronization, the Internet Protocol version 6 (IPv6) addresses pair of the channel ends would appear and disappear strictly, which would perform time-relevance character. A Network-based hopping communication mechanism (NetHop) is proposed in this paper. The address hopping function is deployed on the network side instead of endpoint, which can support secure hopping communication function for universal endpoints without any restriction of Operating System or hardware. By using IPv6 to IPv6 network address translation (NAT), NetHop fully exploits the superiority of IPv6 huge address space. The hopping addresses are generated by hash function and the hopping addresses pair can be chosen randomly. Consequently, NetHop performs better on randomness and concealment than channel-rule NAH.  相似文献   

17.
一种基于RSS的环境自适应目标定位算法   总被引:1,自引:0,他引:1  
目标定位是无线传感器网络的重要应用之一,但是基于接收信号强度(RSS)的定位方法通常因为非合作目标未知其发射功率以及不同环境下难以获取准确的路径衰减指数而无法实现准确定位,得不到广泛应用。提出了一种环境自适应的未知目标定位算法,能够实现对未知信号发射功率的目标进行准确定位,同时不断更新路径衰减指数动态适应环境,从而使提高了算法的适用性。  相似文献   

18.
提出了一种新型的室内密集立体覆盖的计算通信一体化架构,通过挖掘信道计算、容量计算以及网络资源优化计算之间的内在联系,并利用基于云计算和雾计算的密集分布式接入网络的优势,该架构完成了计算电磁学、计算信息论与大规模优化理论到计算通信理论的深度融合.介绍了该架构的实现方法,即以密集异构分布式无线接入网络作为通信接入网络基础架构,利用分布式的计算资源结合计算电磁学理论实现并行化的信道计算,据此进一步依据计算信息论实现容量计算,并基于大规模优化理论完成多用户的网络资源优化计算,最终实现由传播环境到信道容量与资源分配的计算通信.  相似文献   

19.
Temporal event ordering is an important issue in wireless sensor and actuator networks (WSAN) since actuators perform correct actions based on correct ordering among the time-related events. For temporal event ordering algorithms, they ensure that events captured from different sensors should be in the order. However, most of temporal ordering algorithms focus on the delay to transmit packets without considering the delay due to data loss. In the latter condition, the temporal ordering among events may be incorrect since some sensed data are lost due to the fail communication link or sensor. However, there is no literature for addressing the fault tolerance under the temporal event ordering of WSAN. Therefore, we propose a temporal event ordering with fault tolerance (TVOFT) in this paper. Differed from other temporal event ordering algorithms, TVOFT uses the routing table of each node with a acknowledge message once time to ensure the correct ordering of the time-related events. Therefore, the overhead of control packets also could be reduced in TVOFT. The simulations results demonstrate that TVOFT has the better correct event ordering rate and the less overhead of control packets than other temporal ordering algorithms even if the communication link or the sensor is fail.  相似文献   

20.
The paper studies the deployment problem of wireless sensor networks using one or multiple autonomous agents. An online incremental algorithm based on Voronoi partition is proposed to solve the problem, for which each agent deploys sensors one-at-a-time with the objective of using less number of sensors to cover an area and maintain communication connectivity. A probabilistic sensor sensing model is applied for area coverage evaluation. The shape of target area is assumed to be known by the agents, but how the environment affects the communication is unknown a priori. Therefore, the agents are desired to autonomously place every new sensor at an appropriate location based on deployed sensors to ensure connectivity and coverage specifications. Both simulations and experiments using our self-made wireless sensors are conducted to validate the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号