首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a dual-loop delay-locked loop (DLL) which overcomes the problem of a limited delay range by using multiple voltage-controlled delay lines (VCDLs). A reference loop generates quadrature clocks, which are then delayed with controllable amounts by four VCDLs and multiplexed to generate the output clock in a main loop. This architecture enables the DLL to emulate the infinite-length VCDL with multiple finite-length VCDLs. The DLL incorporates a replica biasing circuit for low-jitter characteristics and a duty cycle corrector immune to prevalent process mismatches. A test chip has been fabricated using a 0.25-μm CMOS process. At 400 MHz, the peak-to-peak jitter with a quiet 2.5-V supply is 54 ps, and the supply-noise sensitivity is 0.32 ps/mV  相似文献   

2.
An all-digital cycle-controlled delay-locked loop (DLL) is presented to achieve wide range operation, fast lock and process immunity. Utilizing the cycle-controlled delay unit, the proposed DLL reuses the delay units to enlarge the operating frequency range rather than cascade a huge number of delay units. Adopting binary search scheme, the two-step successive-approximation-register (SAR) controller ensures the proposed DLL to lock the input clock within 32 clock cycles regardless of input frequencies. The DLL operates in open-loop fashion once lock occurs in order to achieve low jitter operation with small area and low power dissipation. Since the DLL will not track temperature or supply variations once it is in lock, it is best suited for burst mode operation. Given a supplied reference input with 50% duty cycle, the DLL generates an output clock with the duty cycle of nearly 50% over the entire operating frequency range. Fabricated in a 0.18-/spl mu/m CMOS one-poly six-metal (1P6M) technology, the experimental prototype exhibits a wide locking range from 2 to 700 MHz while consuming a maximum power of 23 mW. When the operating frequency is 700 MHz, the measured peak-to-peak jitter and rms jitter is 17.6 ps and 2.0 ps, respectively.  相似文献   

3.
A fast-locking and low-jitter delay-locked loop (DLL) using the digital-controlled half-replica delay line (DHDL) is presented. The DHDL can provide stable bias voltage for the charge-pump circuit to achieve low-jitter performances; meanwhile, the property of bandwidth tracking can still be preserved. It can also provide a larger pumping current to reduce the lock time in the initialization state and provide a smaller current to improve jitter performance in the locked state. For comparisons, both the proposed DLL and the self-biased DLL have been fabricated in a 0.35-/spl mu/m one-poly four-metal CMOS process. From the measurement results, the proposed DLL has a shorter lock time and a better jitter performance than the self-biased DLL. The root-mean-squared jitter and peak-to-peak jitter are less than 4.2 and 30 ps, respectively, occurring at 75 MHz, over an operating frequency range of 50-150 MHz.  相似文献   

4.
This paper describes a delay-locked loop (DLL) circuit having two advancements, a dual-loop operation for a wide lock range and programmable replica delays using antifuse circuitry and internal voltage generator for a post-package skew calibration. The dual-loop operation uses information from the initial time difference between reference clock and internal clock to select one of the differential internal loops. This increases the lock range of the DLL to the lower frequency. In addition, incorporation of the programmable replica delay using antifuse circuitry and the internal voltage generator allows for the elimination of skews between external clock and internal clock that occur from on-chip and off-chip variations after the package process. The proposed DLL, fabricated on 0.16-μm DRAM process, operates over the wide range of 42-400 MHz with 2.3-V power supply. The measured results show 43-ps peak-to-peak jitter and 4.71-ps rms jitter consuming 52 mW at 400 MHz  相似文献   

5.
A wide-range delay-locked loop with a fixed latency of one clock cycle   总被引:1,自引:0,他引:1  
A delay-locked loop (DLL) with wide-range operation and fixed latency of one clock cycle is proposed. This DLL uses a phase selection circuit and a start-controlled circuit to enlarge the operating frequency range and eliminate harmonic locking problems. Theoretically, the operating frequency range of the DLL can be from 1/(N/spl times/T/sub Dmax/) to 1/(3T/sub Dmin/), where T/sub Dmin/ and T/sub Dmax/ are the minimum and maximum delay of a delay cell, respectively, and N is the number of delay cells used in the delay line. Fabricated in a 0.35 /spl mu/m single-poly triple-metal CMOS process, the measurement results show that the proposed DLL can operate from 6 to 130 MHz, and the total delay time between input and output of this DLL is just one clock cycle. From the entire operating frequency range, the maximum rms jitter does not exceed 25 ps. The DLL occupies an active area of 880 /spl mu/m/spl times/515 /spl mu/m and consumes a maximum power of 132 mW at 130 MHz.  相似文献   

6.
This paper presents a half-rate clock and data recovery circuit (CDR)that combines the fast acquisition of a phase selection (PS) delay-locked loop (DLL) with the low jitter of a phase-locked loop (PLL). The PLL acquisition time improves considerably with use of a phase frequency magnitude detector(PFMD) that feeds back an estimate of the magnitude of the frequency difference in addition to the sign. Measurements in 0.5/spl mu/m CMOS technology show operation up to 700 Mb/s, a 7% acquisition range, an initial acquisition time of 8 bit times with jitter of 30% bit time, and jitter of 16 ps after the PLL acquires lock. With a phase frequency detector (PFD), the PLL locks in about 700 ns from an initial frequency difference of 7%. Measurements using a PFMD show the 700 ns PLL acquisition time is reduced on average by about a factor of 5 to 140 ns from an initial 7% frequency difference. The power dissipation is 300mW.  相似文献   

7.
A phase-based delta?Csigma (????) analog-to-digital converter (ADC) is proposed and the idea is demonstrated using two architectures. The first architecture adopts a delay-locked-loop (DLL) mechanism. It is realized by a modification of a DLL using a voltage-controlled delay line (VCDL) based quantizer and a charge pump in the feedback path. The proposed architecture offers both reference jitter shaping and quantization noise shaping. Simulation results show that the proposed ???? ADC achieved 50.5?dB SNDR or 8.09?bits resolution for a 10?MHz signal bandwidth. The second architecture adopts a combination of voltage-controlled and digitally-controlled delay lines (VCDL?CDCDL) as the phase-domain counterparts of an ADC?CDAC in a traditional delta?Csigma modulator. Simulation results of the new modulator achieve a 57.8?dB SNR, or a 9.28 bit over a 10?MHz bandwidth.  相似文献   

8.
An all-digital phase-locked loop (PLL) circuit in which resolution in the phase detector and digitally controlled oscillator (DCO) exactly matches the gate-delay time is presented. The pulse delay circuit is connected in a ring shape with 32 inverters (2/sup 5/ inverters). With the inverter gate-delay time as the time base, the pulse phase difference is detected simultaneously with the generation of the output clock. In this system, the phase detector and oscillator share a single ring-delay-line (RDL). This means the resolution is the same at all times, making a high-speed response possible. In a prototype integrated circuit (IC) using 0.65-/spl mu/m CMOS, the generation of a frequency multiplication clock was achieved with four reference clocks, and that of a phase-locked clock with seven reference clocks, for a high-speed response. The cell size was 1.08 /spl times/ 1.08 mm/sup 2/, and the output clock frequency had a wide range of 50 kHz/spl sim/60 MHz. The multiplication range of the clock frequency was also a very wide 4/spl sim/1022, and a high level of precision was achieved with a clock jitter standard deviation of 234 ps. This digital PLL can withstand a broad range of operating environments, from -30/spl deg/C/spl sim/140/spl deg/C, and is suitable for making a programmable clock generator on a chip.  相似文献   

9.
In this paper we analyze jitter in a delay-locked loop (DLL) due to uncertainties in the voltage-controlled delay line (VCDL). To obtain a closed-form equation for jitter in the DLL, time-domain equations of the DLL are used. The jitter at the intermediate stages of the VCDL and the jitter of a conventional delay cell are analyzed. The simulation results show that the jitter of the DLL due to mismatch of the delay cells is zero at the beginning and end of the VCDL and is highest at the middle of the VCDL. Also, a DLL is designed in TSMC 0.18 μm CMOS technology to show the accuracy of the proposed analytical method.  相似文献   

10.
A 250-622 MHz clock buffer has been developed, using a two-loop architecture: a delay-locked loop (DLL) for deskew, and a frequency-locked loop (FLL) for reference frequency supply to the DLL. The DLL incorporates a current-mode phase detector which utilizes a flip-flop metastability to detect a phase difference in the order of 20 ps. A measured jitter is suppressed to less than 40 ps RMS over the operating frequency range. A DLL acquisition time of 150 ns typical is simulated at 400 MHz. A 0.4-μm CMOS technology is used to fabricate the chip  相似文献   

11.
A 2 V 1.8 GHz fully integrated CMOS dual-loop frequency synthesizer is designed in a standard 0.5 /spl mu/m digital CMOS process for wireless communication. The voltage-controlled oscillator (VCO) required for the low-frequency loop is designed using a ring-type VCO and achieves a tuning range of 89% from 356 to 931 MHz and a phase noise of -109.2 dBc/Hz at 600 kHz offset from 856 MHz. With an active chip area of 2000/spl times/1000 /spl mu/m/sup 2/ and at a 2 V supply voltage, the whole synthesizer achieves a tuning range from 1.8492 to 1.8698 GHz in 200 kHz steps with a measured phase noise of -112 dBc/Hz at 600 kHz offset from 1.86 GHz. The measured settling time is 128 /spl mu/s and the total power consumption is 95 mW.  相似文献   

12.
This paper presents a wide frequency range CDR circuit for second generation AiPi+ intra-panel interface. The speed of the proposed clock and data recovery is increased to 1.25 Gbps compared with conventional AiPi+. The DLL-based CDR architecture is adopted to generate multi-phase clocks. We propose a simple scheme for a frequency detector (FD) to overcome the limited frequency range and false lock problem of a conventional delay-locked loop (DLL) to reduce the complexity. In addition, a duty cycle corrector that limits the maximum pulse width is used to avoid the problem of missing clock edges due to the mismatches between rising and falling time of delay cells in the VCDL. Also, the proposed simple DLL architecture comprised of frequency and phase detectors has better process-portability. The proposed CDR is implemented in 0.18 μm technology and the active die area is 660 × 250 μm. The implemented DLL covers a frequency range from 62 to 128 MHz, which is limited only by the characteristics of the delay cell. The peak-to-peak jitter is less than 13 ps when the input frequency is 128 MHz, and the power consumption of the CDR except the input buffer, equalizer, and de-serializer is 5.94 mW from the supply voltage of 1.8 V.  相似文献   

13.
A digital delay-locked loop (DLL) that achieves infinite phase range and 40-ps worst case phase resolution at 400 MHz was developed in a 3.3-V, 0.4-μm standard CMOS process. The DLL uses dual delay lines with an end-of-cycle detector, phase blenders, and duty cycle correcting multiplexers. This more easily process portable DLL achieves jitter performance comparable to a more complex analog DLL when placed into identical high-speed interface circuits fabricated on the same test-chip die. At 400 MHz, the digital DLL provides <250 ps peak-to-peak long-term jitter at 3.3 V and operates down to 1.7 V, where it dissipates 60 mW. The DLL occupies 0.96 mm2  相似文献   

14.
This paper describes an all-analog multiphase delay-locked loop (DLL) architecture that achieves both wide-range operation and low-jitter performance. A replica delay line is attached to a conventional DLL to fully utilize the frequency range of the voltage-controlled delay line. The proposed DLL keeps the same benefits of conventional DLLs such as good jitter performance and multiphase clock generation. The DLL incorporates dynamic phase detectors and triply controlled delay cells with cell-level duty-cycle correction capability to generate equally spaced eight-phase clocks. The chip has been fabricated using a 0.35-μm CMOS process. The peak-to peak jitter is less than 30 ps over the operating frequency range of 62.5-250 MHz, At 250 MHz, its jitter supply sensitivity is 0.11 ps/mV. It occupies smaller area (0.2 mm2) and dissipates less power (42 mW) than other wide-range DLL's [2]-[7]  相似文献   

15.
Negative bias temperature instability (NBTI) is a serious reliability concern for both analog and digital CMOS VLSI circuits. The shift in threshold voltage and reduction in drain current due to NBTI in p-channel MOSFETs are time, bias and temperature dependent. The degradation of the PMOS at any critical nodes in the circuit leads to the failure of the circuit immediately or in few months/year. The Delay-Locked-Loop (DLL) which is used as multi-phase clock generator for microprocessors, frequency synthesizers, time-to-digital converter (TDC) etc. reduces the phase error between output and reference clock until it is locked. The delay variations due to process, voltage and temperature fluctuations are governed by its feedback system. At start-up, the phase shift of the output clock should lie between 0.5 and 1.5 times the time period of the reference clock to achieve regular locking. The deviations from the above criteria due to NBTI degradation directly affect the control system and lead to erroneous locking. The NBTI-induced time-dependent variation in PMOS of the delay stage in voltage-controlled delay line (VCDL) of DLL affects the delay in each stage of VCDL and propagates as phase error to the output clock. This paper analyzes the impact of NBTI-induced time-dependent variations in Delay-Locked-Loop (DLL) based clock generators for the first time. The DLL is designed with 180 nm technologies with working frequency range from 75 MHz to 220 MHz. The time dependent variations in VCDL, the most sensitive blocks of DLL, are analyzed. It is observed that these time-dependent variations increase the phase error and the working of DLL is severely affected at the rearmost end of frequency range. The output clock gets deviated and observed to be locked late after π/2 or π radians from the nominal lock. It is essential to prevent DLL locking to an incorrect delay or false lock and to bring the output clock back to the correct position. An adaptive body bias circuit is proposed in this paper to reduce the impact of NBTI degradation and thereby to prevent erroneous locking in DLL.  相似文献   

16.
This work presents a low-jitter pulsewidth control loop (PWCL) circuit. A mutual-correlated scheme is implemented to adjust the duty cycle and increase the stability of the PWCL. The design is less sensitive to process variation. The jitter induced by voltage ripple is suppressed. The circuit is implemented using 0.35 /spl mu/m 1P4M CMOS process. The area of the PWCL is 136 /spl times/ 143 /spl mu/m/sup 2/. At an operating frequency of 300 MHz, the power dissipation and voltage ripple are reduced by 35.4% and 93.7%, respectively. A test chip is successfully verified to obtain 42-ps jitter at an operating frequency of 900 MHz.  相似文献   

17.
In this paper, a dual charge pump architecture for fast-lock delay-locked loop (DLL) is proposed and analyzed. The proposed fast lock DLL uses only one phase frequency detector (PFD) to perform dual path tuning and a lock control circuit to control the switching between the two path. An improved PFD is proposed to reduce the output jitter by reducing the one-shot pulse produced when the reference signal and feedback signal is in phase. The proposed DLL circuit is designed based on the Silterra 0.18-μm 1P6M CMOS process with a 1.8-V supply voltage. The active area of the proposed DLL circuit is 327.46 × 116.16 μm. An experimental chip was implemented and measured. The measurement results show that the proposed DLL has fast locking properties.  相似文献   

18.
This paper describes a technique for stabilizing the binary phase detector (PD) gain under various jitter conditions. A dead zone in the phase detector estimates the magnitude of high-frequency data jitter, and the resulting jitter information is used to control the charge-pump current. An alternating edge-sampling (AES) PD reduces hardware overhead by removing possible redundancies in previous dead-zone implementations. A series sense amplifier driven by a single-phase clock helps high-speed data sampling with increased data evaluation time. A dual path voltage-controlled oscillator incorporating dual-loop architecture enables wide-range operation of clock/data recovery circuits with low jitter. Fabricated in a 0.18-/spl mu/m CMOS process, a test transceiver operates from 2.5 to 11.5 Gb/s with a bit-error rate of less than 10/sup -12/ while consuming 540 mW from a 1.8-V supply.  相似文献   

19.
针对单光子探测盖革雪崩焦平面读出电路应用,基于全局共享延迟锁相环和2维H型时钟树网络,该文设计一款低抖动多相位时钟电路。延迟锁相环采用8相位压控延迟链、双边沿触发型鉴相器和启动-复位模块,引入差分电荷泵结构,减小充放电流失配,降低时钟抖动。采用H时钟树结构,减小大规模电路芯片传输路径不对称引起的相位差异,确保多路分相时钟等延迟到达像素单元。采用0.18 µm CMOS工艺流片,测试结果表明,延迟锁相环锁定频率范围150~400 MHz。锁定范围内,相位噪声低于–127 dBc/Hz@1 MHz,时钟RMS抖动低于2.5 ps,静态相位误差低于65 ps。  相似文献   

20.
This brief describes a fast-lock mixed-mode delay-locked loop (DLL) for wide-range operation and multiphase outputs. The architecture of the proposed DLL uses the mixed-mode time-to-digital-converter scheme for a frequency-range selector and a coarse tune circuit to reduce the lock time. A multi-controlled delay cell for the voltage-controlled delay line is applied to provide the wide operating frequency range and low-jitter performance. The charge pump circuit is implemented using a digital control scheme to achieve adaptive bandwidth. The chip is fabricated in a 0.25-mum standard CMOS process with a 2.5-V power-supply voltage. The measurements show that this DLL can be operated correctly when the input clock frequency is changed from 32 to 320 MHz, and can generate ten-phase clocks within a single cycle without the false locking problem associated with conventional DLLs and wide-range operation. At 200 MHz, the measured rms random jitter and peak-to-peak deterministic jitter are 4.44 and 15 ps, respectively. Moreover, the lock time is less than 22 clock cycles. This DLL occupies less area (0.07 mm2) and dissipates less power (15 mW) than other wide-range DLLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号