首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
针对传统人脸图像超分辨率算法中存在高频细节信息损失过多的问题,提出一种基于主成分分析和位置块残差补偿相结合的人脸图像超分辨率算法.首先使用主成分分析得到初步的人脸图像分块,再使用基于位置块的残差补偿算法,对初步的人脸图像分块进行高频细节补偿得到最终结果.实验结果验证了算法的有效性.  相似文献   

2.
深层网络有效地提高了重建图像的精度,但是拥有大量参数,使训练时间过长。因此,改进了一种基于递归残差网络的遥感图像超分辨率重建算法,将全局残差学习和局部残差学习相结合,有效地降低训练深层网络的难度,并且通过递归学习控制网络参数。实验结果证明了递归残差网络在遥感图像超分辨率重建中的有效性,改进的网络可以获得更好的主观视觉效果以及客观评价指标。  相似文献   

3.
低质量监控图像鲁棒性人脸超分辨率算法   总被引:2,自引:0,他引:2  
由于人对图像结构信息的理解对于像素值的噪声干扰具有极强的鲁棒功能,为了增强传统算法针对低质量监控图像的鲁棒性,提出一种基于人工形状语义模型的人脸超分辨率算法.该算法将形状描述成一系列面部特征点的组合,通过人工获取人脸图像形状语义信息,利用形状样本库构建超分辨率代价函数的正则约束项;将图像与形状的系数相关性用于统一重建误差项与形状正则项的变量,并将最速下降法用于优化求解.仿真和实际图像实验结果都表明,在主客观质量上,文中算法的性能都优于传统算法.  相似文献   

4.
为解决通道内部特征信息交互性不足、特征利用和表示不够充分导致的人脸面部细节信息恢复不理想的问题,提出一种基于编码器-解码器的注意力残差网络,并设计基于注意力的残差模块,其主要由基准残差模块、沙漏模块与内部特征拆分注意力模块组成,通过内部特征拆分注意力模块加强通道内部之间的交互性,使网络能够提取到更详细的特征信息,恢复出更多人脸面部细节,同时在残差模块中利用一个预激活模块,解决批量归一化层在超分辨率网络中存在的伪影问题。在特征提取单元末端运用多阶特征融合模块充分融合多个阶段的特征,缓解特征在网络传输过程中的丢失现象,提高特征利用率。实验结果表明,该方法可以恢复出更多人脸面部细节,在Helen人脸数据集上,重建人脸图像的PSNR值为27.74 dB,相比SISN和DICNet方法,分别提高了1.47 dB、1.12 dB。在CelebA人脸数据集上,重建人脸图像的PSNR值为27.40 dB,相比SISN和DICNet方法,分别提高了1.26 dB、0.39 dB。  相似文献   

5.
传统的卷积神经网络用到的方法是在稀疏表示的超分辨率图像的基础上学习高/低分辨率图像之间端到端的映射,输入的是高分辨率的图像,输出的是低分辨率的图像,拥有三层卷积层的SRCNN虽然有一定的重建效果,但是感受野较低,因此,提出加深网络结构的方法,此次改进使得后面的网络层拥有更大的感受野,这样结果的像素点可以根据更多的像素点来推断。但是考虑到网络结构加深对传输速率的影响,通过引入局部残差学习和全局残差学习相结合的方法来提高学习率,通过该办法有效地加快了收敛速度,并且通过实验结果验证,与已有的Bicubic、SRCNN和VDSR相比,重建效果在峰值信噪比、结构相似性和视觉效果上均有所提升。  相似文献   

6.
研究单幅人脸图像的超分辨率重构算法。采用马尔可夫网络模型描述重构机制,对输入的低分辨率图像,以及训练用高分辨率图像和对应的低分辨率图像进行分块,并使图像基本对齐,构造训练图像集。针对简化马尔可夫网络计算的需要以及训练集人脸图像的差异,在块坐标限位操作的基础上,提出了一种非线性样本搜索算法,降低了搜索空间复杂度,提高了匹配效率和相关性。算法利用搜索到的高分辨率图像分块样本,直接输出超分辨率图像。分析和实验证实,与传统学习算法相比,该文方法具有输出质量好、效率高的特点。  相似文献   

7.
人脸图像超分辨率非线性学习算法   总被引:1,自引:2,他引:1       下载免费PDF全文
针对一般学习算法效率低下的问题,提出一种马尔可夫网络模型下的非线性学习算法。对输入的低分辨率图像以及训练用高分辨率图像和对应的低分辨率图像进行分块,并使图像基本对齐,构造训练图像集,利用训练集人脸图像的差异,采用块坐标限位操作技术,给出一种非线性样本搜索算法,降低搜索空间复杂度,提高了匹配效率和相关性。利用搜索到的高分辨率图像分块样本,直接输出超分辨率图像。分析和实验证实,与传统学习算法相比,该方法具有输出质量好、效率高的特点。  相似文献   

8.
研究单幅人脸图像的超分辨率重构算法。采用马尔可夫网络模型描述重构机制,对输入的低分辨率图像,以及训练用高分辨率图像和对应的低分辨率图像进行分块,并使图像基本对齐,构造训练图像集。针对简化马尔可夫网络计算的需要以及训练集人脸图像的差异,在采用块坐标限位操作的基础上,提出了一种非线性样本搜索算法,降低了搜索空间复杂度,提高了匹配效率和相关性。算法利用搜索到的高分辨率图像分块样本,直接输出超分辨率图像。分析和实验证实,与传统学习算法相比,本方法具有输出质量好、效率高的特点。  相似文献   

9.
单幅图像超分辨率(SISR)是指从一张低分辨率图像重建高分辨率图像.传统的神经网络方法通常在图像的空间域进行超分辨率重构,但这些方法常在重构过程中忽略重要的细节.鉴于小波变换能够将图像内容的"粗略"和"细节"特征进行分离,提出一种基于小波域的深度残差网络(DRWSR).不同于其他传统的卷积神经网络直接推导高分辨率图像(HR),该方法采用多阶段学习策略,首先推理出高分辨率图像对应的小波系数,然后重建超分辨率图像(SR).为了获取更多的信息,该方法采用一种残差嵌套残差的灵活可扩展的深度神经网络.此外,提出的神经网络模型采用结合图像空域与小波域的损失函数进行优化求解.所提出的方法在Set5、Set14、BSD100、Urban100等数据集上进行实验,实验结果表明,该方法的视觉效果和峰值信噪比(PSNR)均优于相关的图像超分辨率方法.  相似文献   

10.
针对有监督超分辨率算法训练过程需要大量成对图像、处理真实低分辨率图像视觉恢复效果差等问题,提出了一种基于改进CycleGAN的半监督算法Cycle-SRNet.首先,利用退化模型获得与真实低分辨率人脸相似的图像,用于训练网络参数;其次,通过重建模型恢复出具有真实效果的高分辨率人脸图像;最后引入感知损失函数保持人脸结构相似性,以更好地恢复面部特征.实验结果表明,该算法不需要成对的图像进行网络训练,在视觉效果上能够将模糊的视频监控低分辨率人脸图像恢复成清晰可辨的人脸图像,在FID、PSNR和SSIM指标上超越了SRCNN、SRGAN、CinCGAN等方法.  相似文献   

11.
针对传统人脸识别算法运行效率低的问题,提出一种采用图像梯度补偿模式(IGC)的人脸快速识别算法.首先,提取人脸图像四个方位的梯度;其次,将所获的四个梯度进行多方式融合,产生两个梯度算子;再次,使用新产生的梯度算子对原图像进行适度补偿,形成人脸图像的IGC特征图;然后将所获IGC特征图分块统计直方图,并将各个分块的直方图串联成用于人脸图像描述的特征向量;最后使用PCA方式对特征向量进行降维处理,利用SVM分类器进行识别.在ORL和CMUPIE数据库上完成测试,结果表明本文算法在具有较高识别率的同时,其算法的运行效率具有卓越的表现.  相似文献   

12.
基于类内加权平均值的模块PCA算法   总被引:2,自引:2,他引:0       下载免费PDF全文
韩成茂 《计算机工程》2009,35(22):194-196
针对主成分分析(PCA)算法在人脸识别中识别率低的问题,提出一种基于类内加权平均值的模块PCA算法。该算法对每一类训练样本中每个训练样本的每个子块求类内加权平均值,用类内加权平均值对训练样本类内的相应子块进行规范化处理。由所有规范化后的子块构成总体散布矩阵,得到最优投影矩阵,由训练集全体子块的中间值对训练样本子块和测试样本子块进行规范化后投影到最优投影矩阵,得到识别特征,并用最近距离分类器分类。ORL人脸库上的实验结果表明,该算法的识别性能优于普通模块PCA算法。  相似文献   

13.
为在低分辨率图像中提高人脸识别率,从实际应用角度出发,分析研究图像分辨率与人脸识别率间的关系,在此基础上,采用主成分分析方法,对3种数据库中具有不同分辨率的人脸图像进行识别。仿真实验结果表明,该方法能在人脸图像分辨率较低的情况下获得与高分辨率图像基本一致的识别效果,且同时兼顾识别率及识别效率。  相似文献   

14.
人脸识别中PCA方法的推广   总被引:4,自引:0,他引:4  
主成分分析(PrincipalComponentAnalysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域。基于PCA,该文提出了分块PCA的人脸识别方法。分块PCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵利用PCA进行鉴别分析。其特点是能有效地抽取图像的局部特征,对人脸表情和光照条件变化较大的图像表现尤为突出。与PCA方法相比,由于使用子图像矩阵,分块PCA可以避免使用奇异值分解理论,过程简便。此外,PCA是分块PCA的特殊情况。在Yale和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上明显优于经典的PCA方法,识别率可以分别提高6.7和4个百分点。  相似文献   

15.
基于PCA+AdaBoost算法的人脸识别技术   总被引:3,自引:0,他引:3       下载免费PDF全文
人脸识别技术是图像处理方面的重要技术,然而识别率不高却一直妨碍人脸识别技术的广泛应用。主成分分析(PCA)是人脸识别技术的一个重要算法,将PCA与AdaBoost算法相结合改进了原来的算法,并称新算法为PCA+AdaBoost算法。实验证明PCA+AdaBoost算法的识别率明显高于PCA算法,相对于Fisherface算法的识别率也有明显的提高。  相似文献   

16.
党鑫鹏  刘文萍 《计算机应用》2012,32(8):2316-2319
针对主成分分析(PCA)算法在人脸识别中识别率低的问题,提出一种图像纹理频谱特征与PCA相结合的人脸识别算法。该算法利用纹理单元算子提取人脸图像纹理频谱特征,然后用PCA对所提取的特征降维,最后利用最近邻(KNN)分类器进行人脸识别。在ORL人脸库和Yale人脸库上对所提出的算法进行了测试,识别率均高于PCA、模块化二维PCA(M2DPCA)等方法,分别为96.5%和95%。实验结果表明了该算法的有效性和准确性。  相似文献   

17.
利用单幅低分辨率图像重构超分辨率图像的算法中,通常基于样本库进行图像重构,而这类算法效率较低。提出了一种利用SVR和PCA进行特征压缩的图像重构算法,其基本思路是将训练图像分解成若干个基本小块作为样本库;然后利用PCA对低分辨率图像基本小块进行降维处理,并将得到的主成分系数作为特征加以训练,在识别和重构过程中,将待恢复图像进行回归分析,找到相应的超分辨率图像块,然后进行重构。实验结果表明,本文方法较其他算法有更优的恢复结果,并能同时保证较好的实时处理特性,很好地逼近了原始的真实图像。  相似文献   

18.
提出了一种基于主分量分析(PCA)和支持向量机(SVM)相结合的人脸检测方法。该方法首先利用计算复杂度较低的PCA粗分类器对输入图像遍历检测,滤除大部分非人脸窗口,再由SVM分类器进行精确判断,从而加快了检测过程。实验证明。本方法能够有效的检测出复杂背景下的人脸图像,并且处理时间比单纯使用SVM大大缩短。  相似文献   

19.
本文提出了基于曲波变换和主分量分析的人脸识别算法。针对小波变换仅能有效表达图像中的点奇异性的弱点,采用曲波变换提取面部主要特征。由于人脸的主要特征是面部的曲线信息,而曲波变换直接以曲线为表达基元,其变换系数能有效表示沿曲线的奇异性,而且是各向异性的,所以能更好地表达面部特征。进一步使用主分量分析将特征投影到更具表达力的空间中,从而达到更高的识别率。实验结果表明曲波的性能优于小波,尤其是曲波小尺度系数的识别率明显高于小波高频系数。  相似文献   

20.
基于MW(2D)~2 PCA的单训练样本人脸识别   总被引:2,自引:0,他引:2  
传统的人脸识别方法在单训练样本条件下性能会急剧下降,因此,研究出适合于单样本情况下的识别算法是人脸识别问题面临的巨大挑战.针对两个方向的二维主成分分析((2D)~2PCA)算法进行改进,文中提出将加权和分块与(2D)~2PCA相结合的方法称为分块加权(2D)~2PCA,以便更有效地提取人脸的局部特征.同时把模糊理论引入分类决策,应用于单训练样本人脸识别问题.在ORL人脸库以及部分CAS-PEAL人脸库中的实验结果表明,文中方法能取得较好的识别效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号