共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
提出了一种求解置换流水车间调度的蚁群优化算法。该算法的要点是结合了NEH启发式算法和蚁群优化方法。理论论证和对置换流水车间调度问题的基准测试表明了该算法的有效性。 相似文献
3.
针对缓冲区有限的流水车间调度问题,分析了目标函数的特征,及目标函数与工件空闲时间之间的关系,设计开发了启发式算法。算法将以Makespan为目标函数转化成以最小化机器空闲时间为目标函数,并以此为基础构造初始加工序列,再通过贪婪排序与插入寻优消除缓冲区受限约束并寻找问题的近优解。仿真实验结果表明,算法在求解质量和计算时间方面明显优于其他几种排序规则,并体现了目标函数表达式结构的特性及对解的适应性。 相似文献
4.
本文针对从流程工业生产过程中抽象出的考虑资源限制的混合流水车间调度问题,提出了基于规则集的几种启发式算法,并以数值试验证明了算法的有效性。 相似文献
5.
6.
针对置换流水车间调度问题,以最小化总流水时间为目标,提出了一种新颖的两阶段分布估计算法。第一阶段先利用NEH(Nawaz-Enscore-Ham,NEH)启发式构造一个较优的初始个体,然后随机生成初始种群,为保留种群的多样性,提出一种择优机制来选择个体并建立概率模型,同时在当代种群中利用精英机制保留当代种群中的最优解,最后利用概率模型采样并生成下一代种群。第二阶段采用插入、互换操作算子对第一阶段得到的最优解进行邻域搜索,来提高分布估计算法的全局搜索能力,阻止其陷入局部最优解。通过对算例进行实验、对比和分析,证明该算法的可行性和有效性。 相似文献
7.
基于改进蛙跳算法的分布式两阶段混合流水车间调度 总被引:1,自引:0,他引:1
针对考虑顺序相关准备时间的分布式两阶段混合流水车间调度问题,提出一种改进的蛙跳算法以同时最小化拖后工件数和最大完成时间.该算法通过启发式方法和随机方法对种群进行初始化,采取基于种群和记忆的种群划分方法,同时给出模因组质量评价方法,并根据模因组质量将所有模因组划分为最优模因组、最差模因组和其他模因组,每种类型的模因组分别采取不同的搜索策略,并分配不同的搜索次数,其中最优模因组不参与种群划分.选用一种多目标经典算法和两种近5年提出的算法作为对比算法,并与改进蛙跳算法的变体进行比较以验证模因组搜索新策略的有效性.通过对大量实例的计算实验结果表明,模因组搜索新策略有效,改进蛙跳算法能有效求解分布式两阶段混合流水车间调度问题. 相似文献
8.
针对流水车间批调度问题,提出一种基于群智能算法的求解思路。结合问题具体特点,给出工件集合的分批策略,设计了将Palmer和Best Fit(BF)分批规则相结合的分批方法;在批排序阶段,提出了一种改进的微粒群算法;在粒子初始生成阶段,通过引入NEH启发式算法改进了粒子的初始化质量;在全局最佳位置更新前,通过变邻域搜索优化了算法的局部搜索能力,避免了算法陷入局部最优。仿真实验表明,改进后的算法优于传统的微粒群算法和NEH启发式算法。 相似文献
9.
混合流水车间调度的遗传下降算法 总被引:9,自引:1,他引:9
针对混合流水车间调度问题(Hybrid Flow Shop Scheduling,HFSS)建立了混合整数规划模型,提出了遗传下降算法(Genetic Descent Algorithm,GDA).GDA与HFSS工件在机器上最优分配规则相结合,不但能够产生初始可行解,而且保证交叉和变异后解仍然可行;同时在遗传算法中嵌入邻域下降策略.为了验证GDA算法的有效性,随机产生了230组数据进行实验.实验结果表明:对于HFSS问题,在小规模情况下,GDA算法与最优解之间的平均偏差为0.1%;对于较大规模的情况,GDA比NEH算法平均改进10.45%. 相似文献
10.
求解混合流水车间调度问题的一种遗传算法 总被引:3,自引:0,他引:3
由于高度的计算复杂性(NP-hard问题),混合流水车间调度问题很难求得最优解,启发式算法和智能优化算法(如遗传算法)求解此类问题的近优解的有效性和实用性已被证实。该文提出了一种基于遗传算法的求解方法,在由染色体转换成可行调度的过程中引入工件插入方法,同时设计了一种新的交叉算子。通过大量的数值计算表明,该算法的优化质量大大优于传统的遗传算法和NEH启发式算法。 相似文献
11.
流水作业批调度问题优化算法研究 总被引:1,自引:0,他引:1
为解决流水作业环境作业尺寸有差异的批调度问题,建立了基于混合整数规划方法的最大时间跨度模型,分析问题的计算复杂性,给出设备数、作业数既定情况下的可行解规模.设计一种混合蚁群算法对最大时间跨度进行优化,结合算法的搜索机制和批调度启发式规则,实现了最小化最大时间跨度.利用模拟退火方法改进蚁群算法路径选择,避免算法陷入局部最优和过早收敛.实验设计随机算例,对各类不同规模的算例进行仿真实验,实验结果表明混合蚁群算法在最优解、平均运行时间和最大时间跨度等方面优于其他同类算法. 相似文献
12.
为了解决单一算法求解Job Shop调度问题存在的不足,该文提出了一种混合算法,将蚁群算法用于全局搜索。针对蚁群算法易于陷入局部最优的情况,提出了一种基于关键工序的邻域搜索方法,将使用此邻域搜索方法的TS算法作为局部搜索策略。利用TS算法较强的局部搜索能力,提高了蚁群算法的优化能力,达到改善Job Shop调度问题解的质量。实验结果表明,混合算法在较短的时间内,找到了FT10、LA24、LA36等典型benchmarks问题的最优解,得到的makespan的平均值较并行遗传算法(PGA)和TSAB算法均有所提高。 相似文献
13.
14.
针对以最小化时间表长为目标的复杂混合流水车间调度问题,提出了一种将机器布局和工件加工时间特征紧密结合的启发式算法.首先,充分利用各阶段平均机器负荷一般不相等的特点确定瓶颈阶段,构建初始工件排序.其次,针对在瓶颈阶段前加工时间较短而瓶颈阶段后加工时间相对较长的工件,在第1阶段优先开始加工.同时,在瓶颈阶段前的每一个阶段,每当有工件等待加工或同时完工时,优先选择瓶颈阶段前剩余加工时间最短的工件加工;在瓶颈阶段以及瓶颈阶段之后,则优先选择这台机器后剩余加工时间最长的工件加工.最后,采用工件交换和插入操作改进初始调度.用Carlier和Neron的Benchmark算例测试提出的启发式算法.将计算结果与NEH启发式算法进行了比较,平均偏差降低了0.0555%,表明这个启发式算法是有效的. 相似文献
15.
因实际生产中调度问题的规模很大,分析其近似算法的绝对性能比很难,有时甚至不可行,所以研究近似算法的渐近性能比就很有必要,本文针对多机Flowshop加权完成时间调度问题,使用单机松弛和概率分析方法,证明了基于加权最短处理时间需求的启发式算法是渐近最优的. 相似文献
16.
17.