首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A full fluid ball-in-socket elastohydrodynamic lubrication (EHL) analysis of an artificial hip joint made of a metallic femoral head and ultra-high molecular weight polyethylene (UHMWPE) acetabular cup was considered. Since artificial hips operate in a mixed lubrication mode, wear occurs and wear particles lead to reduced hip lifetimes. This study involves simulating these particles within the lubrication regime. Hip deformation was compared to models employing finite element analysis and the spherical fast-Fourier transform technique. Particle modeling results were compared to suspension modeling experiments by other researchers. Results show a strong influence of lubricant fluid velocity on that of the wear particles.  相似文献   

2.
One of the claimed advantages of metal-on-metal total hip replacements is that they ‘self-polish’ in the body, however this assertion has not been supported by quantitative data. Two pairs of components, each consisting of a femoral head and acetabular cup, were obtained at revision surgery. They were subject to topographical analysis using a non-contacting profilometer. In the ‘worn’ regions a reduction in surface roughness was seen alongside a change in skewness values from positive to negative, while elastohydrodynamic theory suggested an improvement towards mild mixed lubrication during gait. Therefore self-polishing of metal-on-metal total hip replacements can occur in vivo.  相似文献   

3.
An analysis of some 100 published and communicated findings on running-in volumetric wear and steady state wear rates from simulator tests carried out in eight laboratories in three countries has been undertaken. Powerful indications have emerged of the dominant role of mixed lubrication in current metal-on-metal hip replacements, with elastohydrodynamic film thickness controlling wear. The background to the calculation of film thickness in the elastic-isoviscous mode of lubrication has been outlined and graphs of representative film thickness and lambda ratio have been presented. For minimum wear and wear rate the diameter of the femoral component should be as large as possible, while the clearance should be as small as is practicable. The findings are valid for both monolithic and surface replacement implants. A tentative proposal is made for the prediction of lifetime wear in metal-on-metal total hip replacements.  相似文献   

4.
An elastohydrodynamic lubrication (EHL) analysis was carried out in this study for a typical McKee-Farrar metal-on-metal hip prosthesis under a simple steady state rotation. The finite element method was used initially to investigate the effect of the cement and bone on the predicted contact pressure distribution between the two articulating surfaces under dry conditions, and subsequently to determine the elastic deformation of both the femoral and the acetabular components required for the lubrication analysis. Both Reynolds equation and the elasticity equation were coupled and solved numerically using the finite difference method. Important features in reducing contact stresses and promoting fluid-film lubrication associated with the McKee-Farrar metal-on-metal hip implant were identified as the large femoral head and the thin acetabular cup. For the typical McKee-Farrar metal-on-metal hip prosthesis considered under typical walking conditions, an increase in the femoral head radius from 14 to 17.4 mm (for a fixed radial clearance of 79 microm) was shown to result in a 25 per cent decrease in the maximum dry contact pressure and a 60 per cent increase in the predicted minimum film thickness. Furthermore, the predicted maximum contact pressure considering both the cement and the bone was found to be decreased by about 80 per cent, while the minimum film thickness was predicted to be increased by 50 per cent. Despite a significant increase in the predicted minimum lubricating film thickness due to the large femoral head and the thin acetabular cup, a mixed lubrication regime was predicted for the McKee-Farrar metal-on-metal hip implant under estimated in vivo steady state walking conditions, depending on the surface roughness of the bearing surfaces. This clearly demonstrated the important influences of the material, design and manufacturing parameters on the tribological performance of these hard-on-hard hip prostheses. Furthermore, in the present contact mechanics analysis, the significant increase in the elasticity due to the relatively thin acetabular cup was not found to cause equatorial contact and gripping of the ball.  相似文献   

5.
A simple mixed lubrication model has been developed to predict the asperity contact and wear for the metal-on-metal bearing couple for total hip joint replacements. It has been shown that the femoral head radius has a large effect on the predicted asperity contact and wear depending on the lubrication regime. An increase in the femoral head radius can lead to an increase in wear under a predominantly boundary lubrication regime, but this trend can be reversed under a mixed lubrication regime towards fluid film lubrication. These observations are consistent with the recent experimental findings from hip simulator studies by Smith and co-workers.  相似文献   

6.
Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry.  相似文献   

7.
The main design features of metal-on-metal (MOM) hip resurfacing prostheses in promoting elastohydrodynamic lubrication were investigated in the present study, including the femoral head diameter, the clearance, and the cup wall thickness. Simplified conceptual models were developed, based on equivalent uniform wall thicknesses for both the cup and the head as well as the support materials representing bone and cement, and subsequently used for elastohydrodynamic lubrication analysis. Both typical first- and second-generation MOM hip resurfacing prostheses with different clearances and cup wall thicknesses were considered with a fixed large bearing diameter of 50 mm, as well as a 28 mm diameter MOM total hip replacement bearing for the purpose of comparison. The importance of the head diameter and the clearance in promoting elastohydrodynamic lubrication was confirmed. Furthermore, it was also predicted that a relatively thin acetabular cup in the more recently introduced second-generation MOM hip resurfacing prostheses would be capable of improving elastohydrodynamic lubrication even further.  相似文献   

8.
A general axisymmetric contact mechanics model for layered surfaces is considered in this study, with particular reference to artificial hip joint replacements. The indenting surface, which represents the femoral head, was modelled as an elastic solid with or without coating, while the other contacting surface, which represents the acetabular cup, was modelled as a two-layered solid. It is shown that this model is applicable to current total hip joint prostheses employing ultra-high molecular weight polyethylene (UHMWPE) acetabular cups against metallic, metallic with coating or ceramic femoral heads as well as metal-on-metal combinations. The effect of cement is also investigated for these prostheses using this model. The use of a metallic bearing surface bonded to a UHMWPE substrate for acetabular cups is particularly examined for metal-on-metal hip joint replacements. Both the contact radius and the contact pressure distribution are predicted for examples of these total hip joint replacements, under typical conditions. Application of contact mechanics to the design of artificial hip joint replacements employing various material combinations is discussed.  相似文献   

9.
The elastohydrodynamic lubrication (EHL) analysis was carried out in this study for a 28 mm diameter metal-on-metal hip prosthesis employing a metallic cup with an ultra-high molecular weight polyethylene (UHMWPE) backing under a simple steady state rotation representing the flexion/extension during walking. Both Reynolds and elasticity equations were coupled and solved numerically by the finite difference method. The elastic deformation was determined by means of the fast Fourier transform (FFT) technique using the displacement coefficients obtained from the finite element method. Excellent agreement of the predicted elastic deformation was obtained between the FFT technique and the conventional direct summation method. The number of grid points used in the lubrication analysis was found to be important in predicting accurate film thicknesses, particularly at low viscosities representative of physiological lubricants. The effect of the clearance between the femoral head and the acetabular cup on the predicted lubricant film thickness was shown to be significant, while the effect of load was found to be negligible. Overall, the UHMWPE backing was found not only to reduce the contact pressure as identified in a previous study by the authors (Liu et al., 2003) but also significantly to increase the lubricant film thickness for the 28 mm diameter metal-on-metal hip implant, as compared with a metallic mono-block cup.  相似文献   

10.
Metal-on-metal (MoM) hip replacements are commonly used hip implants. However, one of the issues under debate is the interference of friction and wear. The purpose of this feasibility study is to elucidate the performance of palm lubrication between the femoral head and the acetabular cup. In the tribology of hip implants, the use of palm olein, palm kernel oil, and palm fatty acid distillate as synthetic lubricants for human joints has shown tremendous potential. A modified pin-on-disc as hip screening has been used to evaluate the friction and wear on an acetabular cup with an inner diameter of 28 mm. The wear debris was then observed with microscopy image analysis. This study revealed that the physical and unique chemical properties in palm oil can optimize the rate of friction and wear on the metal acetabular cup and thus allow for a stable implant of MoM.  相似文献   

11.
While total hip replacement represents the major success story in orthopaedic surgery in the twentieth century, there is much interest in extending even further, early in the twenty first century, the life of implants. Osteolysis has been identified as a major factor limiting the life of prostheses, with indications that fine polyethylene wear debris, generated primarily at the interface between the femoral head and the acetabular cup, promotes the process. There is therefore considerable interest in the introduction of alternative wear resistant systems to limit the deleterious effects of wear. These alternatives include ceramic-on-ceramic and metal-on-metal configurations and the present paper is primarily concerned with the latter. Some six pairs of new metal-on-metal implants of 36 mm diameter and four pairs of existing metal-on-metal implants of 28 mm diameter were tested in a ten-station hip joint simulator in the presence of a 25 per cent bovine serum solution. The implants were tested in the anatomical position to 5 x 10(6) cycles. The new heads and cups were manufactured from CoCrMo alloy with careful attention being paid to sphericity and surface finish of both components. The wear performance of the new and existing metal-on-metal total hip replacements have been evaluated and compared. The overall wear rates have then been compared with previously reported wear rates for a zirconia-on-polyethylene prosthesis of 22 mm diameter tested on the same simulator. The comparison is taken further by recalling published penetration data for metal-on-polyethylene implants of 22 and 28 mm diameter and converting these to volumetric wear rates. It was found that the heads and cups in metal-on-metal joints wore by almost equal amounts and that the opposing surfaces converged to similar surface roughness as the testing time increased. Steady state wear rates were generally achieved after 1-2 x 10(6) cycles. The mean long-term wear rates for the metal-on-metal prostheses were very low, being 0.36 mm3/10(6) cycles and 0.45 mm3/10(6) cycles for the new implants of 36 mm diameter and established implants of 28 mm diameter respectively. These wear rates compare with 6.3 mm3/10(6) cycles for zirconia-on-ultra-high molecular weight polyethylene tested on the same simulator and representative clinical values for metal-on-polyethylene of 36 mm3/year for heads of 22 mm diameter and a reported range of 60-180 mm3/year for 28 mm heads. These values do not translate directly into numbers of particles, since the metallic debris from metal-on-metal joints is very fine. The number of metallic particles may exceed the number of polyethylene wear particles from an otherwise similar metal-on-polyethylene joint by a factor of 10(3). A detailed discussion of the size and morphology of wear debris and tissue reaction to various forms of debris is beyond the scope of this paper, but the biological response to polymeric, metallic and ceramic wear debris forms a major subject for further study. The present investigation nevertheless confirms the potential of carefully designed and manufactured metal-on-metal total replacement joints for the treatment of diseased and damaged hips.  相似文献   

12.
It has been found that a remarkable reduction in the wear of metal-on-metal hip joints can be achieved by simply increasing the diameter of the joint. A tribological evaluation of metal-on-metal joints of 16, 22.225, 28 and 36 mm diameter was conducted in 25 per cent bovine serum using a hip joint simulator. The joints were subject to dynamic motion and loading cycles simulating walking for both lubrication and wear studies. For each size of joint in the lubrication study, an electrical resistivity technique was used to detect the extent of surface separation through a complete walking cycle. Wear of each size of joint was measured gravimetrically in wear tests of at least 2 x 10(6) cycles duration. Joints of 16 and 22.225 mm diameter showed no surface separation in the lubrication study. This suggested that wear would be proportional to the sliding distance and hence joint size in this boundary lubrication regime. A 28 mm diameter joint showed only limited evidence of surface separation suggesting that these joints were operating in a mixed lubrication regime. A 36 mm diameter joint showed surface separation for considerable parts of each walking cycle and hence evidence of the formation of a protective lubricating film. Wear testing of 16 and 22.225 mm diameter metal-on-metal joints gave mean wear rates of 4.85 and 6.30 mm3/10(6) cycles respectively. The ratio of these wear rates, 0.77, is approximately the same as the joint diameters ratio, 16/22.225 or 0.72, as expected from simple wear theory for dry or boundary lubrication conditions. No bedding-in was observed with these smaller diameter joints. For the 28 mm diameter joint, from 0 to 2 x 10(6) cycles, the mean wear rate was 1.62 mm3/10(6) cycles as the joints bedded-in. Following bedding-in, from 2.0 x 10(6) to 4.7 x 10(6) cycles, the wear rate was 0.54 mm3/10(6) cycles. As reported previously by Goldsmith et al. in 2000 [1], the mean steady state wear rate of the 36 mm diameter joints was lower than those of all the other diameters at 0.07 mm3/10(6) cycles. For a range of joints of various diameters, subjected to identical test conditions, mean wear rates differed by almost two orders of magnitude. This study has demonstrated that the application of sound tribological principles to prosthetic design can reduce the wear of metal-on-metal joints, using currently available materials, to a negligible level.  相似文献   

13.
Ceramic-on-metal (CoM) total hip replacements have shown reduced wear and friction. Lubrication and contact mechanics analyses play an important role in providing an overall understanding for the tribological performance of CoM bearings. In the present study, the steady-state contact mechanics and elastohydrodynamic lubrication (EHL) and transient EHL of CoM bearings were analyzed. The dry and lubricated contact pressures of CoM bearings showed typical characteristics of hard-on-hard hip bearings. The effects of head radius and radial clearance on the lubrication performance were predicted. CoC and CoM bearings are more likely to benefit full fluid film lubrication than MoM bearings.  相似文献   

14.
The elastohydrodynamic lubrication problem of metal-on-metal hip joint replacements was considered in this study. A simple ball-in-socket configuration was used to represent the hip prosthesis. The Reynolds equation in a spherical coordinate was adopted for the fluid-film lubrication analysis, to account for the ball-in-socket geometry. The corresponding elastic deformation was calculated by means of the finite element method in order to consider the complex ball-in-socket geometry as well as the backing materials underneath the acetabular cup. Both the Reynolds and the elasticity equations were solved simultaneously using the Newton-Raphson finite difference method. The general methodology developed was then applied to a recent experimental prototype metal-on-metal hip implant. It was shown that the backing materials underneath the acetabular cup had little influence on the predicted contact pressure and the elastic deformation at the bearing surfaces for this particular example. Both the film thickness and the hydrodynamic pressure distributions were obtained under various loads up to 2500 N. The predicted minimum lubricating film thickness from the present study was compared with a simple estimation using the Hamrock and Dowson formulae based upon an equivalent ball-on-plane model and excellent agreement was found. However, it was pointed out that for some forms of metal-on-metal hip prostheses with a thin acetabular cup, a polyethylene inlay underneath a metallic bearing insert or a taper connection between a bearing insert and a fixation shell, the general methodology developed in the present study should be used and this will be considered in future studies.  相似文献   

15.
Today, in spite of the long experience acquired in the field of total hip replacements, prosthetic systems are still far from reproducing the natural system. One of the main causes of long term failure is the amount of wear debris produced by the tribological coupling between acetabolar cup and femoral head. The authors carried out experimental research in order to investigate the tribological coupling of various prosthetic biomaterials. Experimental tests were carried out with the pin-on-disc tribometer in dry, water and human serum as lubricant. This study sets new bases for the design of modern hip prostheses: 1. the wettability difference among the materials in tribological coupling, which is the necessary condition to promote efficient lubrication; 2. the use of Peek reinforced with long and unidirectional carbon fibres in the prosthetic field  相似文献   

16.
Clinically, malposition of the acetabular cup in large-diameter metal-on-metal prosthetic hip designs is associated with high wear, adverse reaction to metal debris and early failure. A steep angle of the cup (>60°) may lead to poor tribological performance. Large-diameter CoCr-on-CoCr prostheses were run in the HUT-4 hip joint simulator so that a steep angle was included. With a correct position, the tribological behaviour was excellent, the wear rate being 0.1 mm3/106 cycles. In the steepest position, lubrication failed and the wear rate was two orders of magnitude higher. This study stresses the importance of rigorous pre-clinical testing.  相似文献   

17.
Elastohydrodynamic lubrication was analysed under squeeze-film or normal approach motion for artificial hip joint replacements consisting of an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup and a metallic or ceramic femoral head. A simple ball-in-socket configuration was adopted to represent the hip prosthesis for the lubrication analysis. Both the Reynolds equation and the elasticity equations were solved simultaneously for the lubricant film thickness and hydrodynamic pressure distribution as a function of the squeeze-film time was solved using the Newton-Raphson method. The elastic deformation of the UHMWPE cup was calculated by both the finite element method and a simple equation based upon the constrained column model. Good agreement of the predicted film thickness and pressure distribution was found between these two methods. A simple analytical method based upon the Grubin-Ertel-type approximation developed by Higginson in 1978 [1] was also applied to the present squeeze-film lubrication problem. The predicted squeeze-film thickness from this simple method was found to be remarkably close to that from the full numerical solution. The main design parameters were the femoral head radius, the radial clearance between the femoral head and the acetabular cup, and the thickness and elastic modulus for the UHMWPE cup; the effects of these parameters on the squeeze-film thickness generated in current hip prostheses were investigated.  相似文献   

18.
Tribology of total artificial joints.   总被引:5,自引:0,他引:5  
The tribology of total artificial replacement joints is reviewed. The majority of prosthesis currently implanted comprise a hard metallic component which articulates on ultra high molecular weight polyethylene surface. These relatively hard bearing surfaces operate with a mixed or boundary lubrication regime, which results in wear and wear debris from the ultra high molecular weight polyethylene surface. This debris can contribute to loosening and ultimate failure of the prostheses. The tribological performance of these joints has been considered and a number of factors which may contribute to increased wear rates have been identified. Cushion bearing surfaces consisting of low elastic modulus materials which can articulate with full fluid film lubrication are also described. These bearing surfaces have shown the potential for greatly reducing wear debris.  相似文献   

19.
The factors influencing the load‐carrying capacity of tribological contacts are reviewed. The load‐carrying capacity depends in part on the lubrication regime, and hydrodynamic, hydrostatic, and elastohydrodynamic lubrication are discussed. In some circumstances, lubrication is not possible. The parameters of dry rubbing are described, and approaches to the design and operation of dry bearings are discussed, particularly the choice of suitable non‐metallic materials for use in the wear couple.  相似文献   

20.
The possibility of replacing the femoral head alone, in either solid or articular surface replacement form, during revision operations on metal-on-metal total hip replacements remains an attractive feature of such implants. In the present investigation, laboratory simulator studies of the influence upon volumetric wear of inserting a new femoral head, of introducing some head rotation, and of damaging the femoral head by scratches have all been explored. New and rotated heads both involve an additional running-in period, but the experimental studies show that the volumetric wear associated with this process is less than the initial running-in wear. The beneficial effects upon volumetric wear of small clearances have been confirmed, while the processing of high-carbon Co-Cr-Mo materials appears to be much less influential. Scratches did not affect wear as much as head replacement or head rotation, but the ongoing wear rates were somewhat higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号