首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对斜齿轮系统的扭转振动,在考虑时变刚度和齿侧间隙这两种非线性因素的条件下,建立了斜齿轮副的单自由度纯扭模型。分析了时变刚度和齿侧间隙的非线性特征,并给出了表征方法。对含非线性因素的动力学模型中进行化简求解,分析了齿宽对时变刚度的影响,结果表明,若齿宽使轴向重合度εβ为1(整数)时,时变刚度的幅值约为零。分析了齿侧间隙的大小对系统的影响,对于斜齿轮副,在间隙60μm时,系统振动随间隙增加几乎呈线性增加,当间隙再增大时,系统振动对间隙的变化不敏感。  相似文献   

2.
《机械传动》2016,(6):149-154
齿轮是汽车变速器传动系统的动力载体,其动力学特性很大程度上决定了变速器的振动特性。利用时变接触线法求解了理论时变啮合刚度;结合齿距误差等内部激励建立了单对斜齿轮副弯扭轴耦合非线性动力学模型。采用龙格库塔方法进行数值求解,得到了斜齿轮副的振动响应时域曲线、频谱图。研究结果表明,时变啮合刚度越小,齿轮振动程度增大越迅速。加入齿距误差后,振动加速度时域特性以轴向振动变化最为明显,且齿距误差越小,振动强烈程度增大越缓慢。  相似文献   

3.
邱桓松  袁杰红  李源 《机械传动》2015,(2):12-15,39
基于时变啮合阻尼、时变啮合刚度和静态传递误差的考虑,建立了含间隙的弧齿锥齿轮副扭转动力学模型,并采用Runge-Kutta法求解,主要分析时变啮合阻尼和齿侧间隙对系统响应的影响。计算结果表明,系统的非线性振动特性受时变啮合阻尼和间隙的影响较明显。随着阻尼系数和间隙的改变,系统振幅在一定范围内会产生较明显的波动,而且还会出现周期、拟周期和混沌运动以及分岔和跳跃现象等非线性特性。  相似文献   

4.
齿轮系统时变刚度和间隙非线性振动特性研究   总被引:15,自引:3,他引:15  
以齿轮系统动力学和非线性动力学理论为基础,针对齿轮系统时变啮合刚度和齿侧间隙耦合作用的具体特点,建立了齿轮系统非线性模型,并用数值积分和数值仿真方法对其在某些参数域中进行了非线性振动研究。根据仿真结果得到一些有用的结论,是进一步进行多自由度齿轮系统和行星齿轮系统的非线性动力学研究的基础。  相似文献   

5.
为获得更为准确的非对称渐开线齿轮动力学变化规律,将时变啮合刚度和齿轮侧隙两个因素引入传统齿轮副扭转振动模型,建立非对称渐开线齿轮的动力学模型;利用Runge-Kutta法求解该模型,获得时间历程图、相图、Poincaré映射图以及FFT频谱图,进而分析时变啮合刚度和齿轮侧隙变化时的齿轮动力学行为。研究发现,非对称渐开线齿轮的平均啮合刚度大于对称渐开线齿轮,具有更优的动力学性能;时变啮合刚度中的1阶谐波分量对动力学性能影响不大,但平均啮合刚度影响较大,且其与动力学性能之间呈现出非线性变化规律,即随着平均啮合刚度的增加,动力学特性由差变好,但继续增加后又变差,因此,需根据实际工况确定其最优值。随着齿轮侧隙的增加,动力学性能下降,与对称渐开线齿轮相同。该项研究对于扩充非对称渐开线齿轮动力学理论体系、提高其传动性能,具有一定的理论意义和应用价值。  相似文献   

6.
闵达  邹光明  王兴东  唐伟 《机械传动》2021,45(10):36-41,46
以圆柱直齿轮为研究对象,采用质量集中法建立了行星齿轮传动系统的非线性动力学模型.模型考虑了齿侧间隙、时变啮合刚度、啮合阻尼与综合啮合误差4个影响因素,列出模型对应的动力学方程,并使用4阶龙格-库塔法进行求解;通过改变齿侧间隙的大小,得出系统在不同间隙大小下的响应状态差异;最后,用相对位置误差的时间位移图像、相平面图及FFT频谱图进行反映,得出具体齿侧间隙大小对齿轮振动响应的影响.  相似文献   

7.
疲劳点蚀斜齿轮啮合刚度计算是齿轮故障动力学分析的重要基础.基于有限元的斜齿轮啮合刚度计算方法,建立了正常齿轮和疲劳点蚀齿轮的有限元模型.通过有限元模型计算,得到了齿面法向接触力和综合弹性变形量;并根据啮合刚度计算方法,得到了齿轮的单齿啮合刚度和多齿综合啮合刚度.分析不同点蚀剥落长度和宽度对齿轮啮合刚度的影响得知,剥落长度和宽度对齿轮啮合刚度影响较大;而且剥落长度会影响齿轮啮合刚度的变化区域.通过疲劳点蚀试验证明,齿轮啮合刚度的减小使得齿轮振动冲击响应增大.  相似文献   

8.
齿轮系统在复杂的工况条件下,容易产生裂纹故障,对正常运转造成困难。时变啮合刚度作为齿轮传动系统重要内部激励之一,刚度的变化能够良好地反映齿轮的动力学响应,因此使用精确的刚度算法能够有效地进行齿轮系统动力学特征分析。考虑齿轮过渡曲线函数,通过分析完整的齿廓曲线,采用势能法计算齿轮时变啮合刚度,研究10种不同裂纹长度的刚度变化。考虑时变啮合刚度和齿间滑动摩擦,建立6自由度齿轮系统动力学模型,利用Runge-Kutta法仿真求解齿轮不同裂纹长度时的动力学响应。通过分析位移响应发现齿轮存在裂纹时会产生冲击特征,随着裂纹长度增加,冲击特征越来越明显。最后比较分析了多种统计指标随裂纹扩展程度的变化趋势,结果表明峭度指标对故障特征最为敏感。  相似文献   

9.
冯娜娜  吴海淼 《机械传动》2021,45(1):99-103
提出了一种基于计算机仿真的解析法,用于量化齿轮副在不同齿轮故障情况下的时变啮合刚度.齿轮故障在影响齿轮副传动的同时往往也伴随着刚度的降低,时变啮合刚度是状态监测和啮合齿轮副动态特性描述的一项重要参数,势能法是计算时变啮合刚度最常用的分析方法之一.采用势能法研究了含裂纹齿轮、断齿和齿面剥落等3种故障情况对于齿轮啮合刚度的...  相似文献   

10.
魏鹏  邓松 《机械传动》2020,44(9):51-57,71
针对多级斜齿轮动力学研究中的时变啮合刚度准确计算与其波动值定量分析等现实问题,以某电动汽车用减速器两级斜齿轮为研究对象,基于势能法计算不同螺旋角β下各级齿轮副的时变啮合刚度。首次提出由螺旋角等齿轮参数决定的参数τ,定量分析表明,当τ值越小时,时变啮合刚度波动值ΔK越小。建立包含12自由度的两级斜齿轮系统集参模型,研究不同螺旋角下系统的动态特性。结果表明,当β为15°时,系统各项动态性能均较好,此时各级齿轮副的τ和ΔK均较小,验证了通过参数τ准确预估ΔK进而预判齿轮系统动态性能的可行性与准确性。  相似文献   

11.
在势能法基础上,基于切片积分原理,考虑齿根过渡曲线方程,提出一种改进的斜齿时变啮合刚度计算方法。该方法考虑了真实齿根过渡曲线参数方程,修正了渐开线齿廓的积分区间,与有限元方法的对比结果验证了算法的有效性,减小了时变啮合刚度的计算误差。在此方法基础上,分析了齿宽、螺旋角、齿数和模数对时变啮合刚度的影响。结果表明,时变啮合刚度均值受齿宽影响较大,近似成线性关系;受螺旋角、齿数影响较小;螺旋角增大,均值以较小幅度波动性变化;中心距一定时,齿数增大,时变啮合刚度缓慢增大;齿轮参数改变会影响重合度;轴向重合度为整数时,时变啮合刚度波动值较小。  相似文献   

12.
斜齿圆柱齿轮传动的静态啮合刚度和动态啮合刚度   总被引:1,自引:0,他引:1  
本文根据齿轮啮合原理,推导出斜齿圆柱齿轮啮合瞬时接触线长度的计算方法。根据斜齿轮啮合的轮齿弯曲变形影响函数和接触变形影响函数[1]、[2]、[3],计算了斜齿圆柱齿轮的轮齿变形和单对齿刚度;并导出斜齿轮的静态啮合刚度和动态啮合刚度的计算式。最后通过实例计算分析了齿轮误差和参数对啮合刚度的影响。  相似文献   

13.
齿侧间隙对齿轮系统动力学行为的影响   总被引:1,自引:0,他引:1  
为分析齿轮传动系统在齿侧间隙变化条件下的非线性动力学变化机理,对不同齿侧间隙参数下非线性齿轮传动系统的动力学行为进行了研究,建立了全齿齿侧间隙变化的齿轮传动系统非线性动力学模型,探讨了不同齿侧间隙参数条件下齿轮传动系统吸引子的变化。研究表明,齿侧间隙的变化不仅能够影响齿轮传动系统振动幅值的变化,同时,齿侧间隙的变化也能够显著改变齿轮传动系统的动力学行为,使齿轮传动系统在混沌状态与周期状态间发生跃变。研究结果能够为齿轮传动系统的设计和故障诊断提供一定的参考。  相似文献   

14.
《机械传动》2015,(12):17-23
考虑斜齿圆柱齿轮的齿侧间隙、时变啮合刚度和综合啮合误差等非线性因素,建立三自由度单级斜齿圆柱齿轮轴-扭耦合非线性动力学模型。以直齿圆柱齿轮传动中采用的"分段线性"齿侧间隙函数为基础,经高次拟合得到适合斜齿圆柱齿轮啮合特点的齿侧间隙函数。采用变步长Rungekutta法数值求解所建立的斜齿圆柱齿轮系统动力学方程,得到系统在两种不同齿侧间隙函数下的非线性动态响应结果。综合运用分岔图、最大Lyapunov指数、相图、Poincaré映射图和FFT频谱图分析了两种不同齿侧间隙函数下频率对系统分岔与混沌特性的影响。经对比分析,高次拟合得到的齿侧间隙函数更符合斜齿圆柱齿轮传动系统的特点。  相似文献   

15.
斜齿轮啮合过程中的理想齿面为渐开螺旋面,但在实际的服役过程中,由于齿轮受载、热变形以及支承变形等因素的影响,实际齿面与理想齿面存在一定的偏差,通常采用齿面修形的方法来减小由于位置偏差引起的齿面偏载及振动。现有的修形方式往往采用考虑载荷大小的公式法计算修形量,虽然能在一定程度上提高传动性能,但仍存在设计精度不高的问题。提出一种基于齿轮时变啮合过程的拓扑修形齿面设计方法,以此来提高齿轮副传动的啮合性能。首先,通过沿斜齿轮接触迹线划分齿面的方式对石川公式进行改进,建立斜齿轮副齿面时变刚度模型;然后,根据齿轮副的实际啮合过程建立6自由度动力学方程;最后,根据动力学方程计算的齿面综合变形量设计补偿齿面拓扑修形量,并进行了动力学仿真。通过与采用传统公式法设计的修形齿轮进行仿真对比,验证了提出方法的有效性。  相似文献   

16.
间隙对含摩擦和时变刚度的齿轮系统动力学响应的影响   总被引:21,自引:3,他引:18  
主要研究在考虑摩擦和时变刚度时,轮齿间隙对齿轮系统动力学响应的影响。建立常间隙、时变间隙和随机间隙三种不同的间隙形式。利用数值仿真的方法得到系统的幅频响应曲线和时间历程曲线。分析发现:①在低速时,随着摩擦因数的增大,系统响应的方均值和平均分量增大;并经过三次跳跃之后系统进入混沌运动状态;②时变间隙幅值增大导致系统提前进入混沌状态,而且随着时变幅值的增大跳转频率逐渐减小;时变间隙频率较小时,间隙对系统的影响较小;当时变间隙的频率较大时,系统在 =0.2,0.3时出现明显的共振响应,系统的响应以高频率分量4、5和6为主;③考虑随机间隙时,随着 的增大,齿轮系统响应的平均分量波动比较大。  相似文献   

17.
齿轮啮合刚度计算的准确性对研究齿轮传动系统稳定性具有重要意义.其中临界补偿间隙对研究热弹耦合变形具有重要影响.该研究精准计算齿轮系统的临界补偿间隙,探究临界补偿间隙对齿轮传动系统的影响.根据齿轮刚度定义,综合考虑实际运行工况下齿轮的温度场影响,基于有限元法、当量齿形法(石川模型)、数值仿真与热膨胀理论,建立含有齿侧间隙...  相似文献   

18.
理耀兵  蒋汉军  刘富豪  张介禄 《机电工程》2023,(7):1017-1023+1092
为了探究齿侧间隙与轴承刚度的时变特性对含质量偏心齿轮系统动态特性的影响,结合其耦合后的动力学模型,并利用龙格库塔(Runge-Kuta)算法,求解了时变侧隙和时变轴承刚度;根据不同偏心距,对齿轮系统进行了动态响应分析。首先,根据几何关系建立了因轴承变形引起的时变齿侧间隙模型,利用赫兹接触理论推导了滚动轴承时变轴承刚度公式;然后,基于时变齿隙与时变轴承刚度,建立了含齿面摩擦与质量偏心的六自由度直齿轮系统动力学模型;最后,分析了在不同偏心距下齿隙与轴承刚度的时变特性对齿轮系统动态响应的影响。研究结果表明:考虑齿隙和轴承刚度的时变特性后,动态传递误差幅值相比恒定齿隙和轴承刚度所对应幅值分别提高了16.46%、2.02%;偏心距从0 mm增加到0.5 mm及1 mm时,其对应系统的最大边频幅值从0μm增加到0.19μm和0.33μm;质量偏心会影响系统动态响应,且随偏心距的增大,其由稳定的周期运动变为有波动性的周期运动,波动幅度与偏心距成正相关;同时,质量偏心会导致系统出现边频,边频幅值随偏心距的增大而增大;因此,应将偏心距控制在合理范围内,以防其过大而引起齿轮系统发生不稳定现象。  相似文献   

19.
齿侧间隙的存在会产生齿间冲击,影响齿轮传动的平稳性。为了全面研究齿侧间隙对齿轮振动特性的影响,通过建立齿轮副非线性振动的数学模型,并基于Runge-Kutta法对该模型进行数值仿真求解,结合时间历程图、相图、Poincaér映射图以及FFT频谱图,研究不同啮合频率、不同载荷下的齿侧间隙对齿轮副振动和冲击状态的影响。研究表明,啮合频率对齿侧间隙的动力学响应呈现非线性关系,在固定啮合频率时,在一定齿侧间隙范围内,齿轮出现混沌。在此范围外,不受影响;齿轮传递载荷较小时,齿侧间隙更容易对齿轮副的振动特性造成影响。而重载时,齿侧间隙的变化对齿轮副振动特性影响较小;随着齿侧间隙的增加,齿轮冲击状态由双边冲击向单边冲击过渡,当超过一边界值时,冲击状态维持在单边冲击状态不变。  相似文献   

20.
基于齿面摩擦的斜齿轮传动动力学特性分析   总被引:1,自引:0,他引:1  
为了研究斜齿轮齿面摩擦的动力学特性,建立了12自由度斜齿轮系统动力学模型,以时变的啮合刚度作为研究基础,并考虑了假定摩擦系数恒定、接触线上载荷均布状况下摩擦力的影响,以一斜齿轮对为研究对象,采用Newmark法求解齿轮系统的动力学响应,分析有摩擦和无摩擦两种工况下位移变化,结果表明在摩擦力作用下,垂直齿轮啮合线方向的振动加剧,对传动系统平稳有不良影响。模型亦有助于斜齿轮啮合摩擦激励变化特性的进一步研究,结论对齿轮系统的设计分析有一定参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号