首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以降低城市地铁车站深基坑开挖对周围环境影响,保障地铁工程施工安全为目的,该研究依托西安市地铁二号线运动公园车站深基坑施工,对施工过程中钢支撑轴力、桩身水平位移、基坑周围地表沉降进行了现场监测,分析了工程开挖前后一段时期内基坑变形规律.研究结果表明:围护桩变形的最大部位在距桩顶2/3的基坑开挖深度处;距基坑长边10m左右地表变形随着基坑开挖深度增加,基坑开挖初期变形速率较大,随着开挖深度的增加,速率逐渐减小;钢支撑能够有效地限制围护桩的水平位移,随着基坑开挖深度和钢支撑的增加,钢支撑的轴力随之增大,最后随时间内力趋于稳定.  相似文献   

2.
《南昌水专学报》2013,(4):21-26
削坡在城市基坑建造中经常被采用,然而其设计和施工多依据经验.以某地铁车站深基坑工程为例,采用有限元方法探讨了削坡对围护桩变形及内力的影响,并根据削坡角度和削坡深度对围护桩的影响程度进行了研究.计算结果表明,考虑基坑削坡后,周边土体最大沉降与围护桩最大水平位移减小明显,但围护桩内力变化不大;在基坑设计时,将基坑削坡直接等同于开挖深度降低会低估围护桩变形及内力,其中低估围护桩最大弯矩约9.1%,使基坑设计偏危险;当削坡深度在4 m范围内,削坡角度对围护桩变形及内力影响不大;当削坡角度为45°时,围护桩的变形及内力随着削坡深度的增加而减小.  相似文献   

3.
以武汉地铁2号线机场线盘龙城车站出入口基坑为例,采用围护桩水平位移监测及数据采集方法,分析有无架设钢支撑支护桩深度-位移曲线,探讨围护桩水平位移变化规律. 然后采用有限元软件PLAXIS 2D模拟分析基坑开挖过程有无架设钢支撑支护桩内力和水平位移变化规律,并与现场监测数据相互验证. 由围护结构水平位移的监测数据和数值模拟结果可得,在基坑内架设钢支撑可以减缓基坑偏移速率以及在距围护桩桩底的H/3~2H/3处,偏移量最为明显,偏移量也最大,呈“弓”字型.  相似文献   

4.
随着城市地铁线路穿越山地环境及交通干线的日益增多,车站基坑邻近边坡以及横跨交通干道作为两种典型的特殊施工环境变得愈发难以避免,而采用顺逆结合施工技术可有效缓解基坑工程与现有交通的矛盾.现有研究对于偏压环境下地铁车站基坑顺逆结合施工过程的系统分析相对欠缺,为分析偏压环境及顺逆结合施工方式对于基坑稳定性的影响,本文依托深圳轨道交通2号线莲塘口岸站工程,基于现场监测数据分及数值模拟方法对偏压环境下顺逆结合施工过程中地层及围护结构的稳定性情况进行了研究.结果显示,施工过程中基坑土体及围护结构均处于稳定状态,施工完成后地表沉降主要影响区分布在0~1.25H之间,次要影响区在1.25~2.0H之间,沉降最大值出现在0.25H区域附近(H为基坑开挖深度),相对于无偏压环境扩大了25%的沉降影响范围.边坡偏压的存在主要影响邻近边坡处围护桩变形,偏压侧拉锚作用可显著减小围护桩的水平变形,相对于无锚索情况可有效缩减10倍的围护桩水平变形.  相似文献   

5.
基坑在开挖过程中,由于受到周边环境条件及工程地质条件的影响,围护结构的变形规律差别很大。本文以合肥地铁一号线6#风井深基坑为研究对象,依据排桩结构变形的实际监测数据与数值模拟的方法相结合,详细分析了在偏压荷载的作用下,基坑施工的各阶段围护桩体的变形规律,并分析了路基偏压对于基坑开挖的影响。研究结果表明:随着基坑开挖与支撑的架设,围护桩变形曲线呈现"弓形"变化,桩体的变形规律与支撑的架设位置、支撑的架设时间密切相关,围护桩体最大水平位移发生在基坑开挖深度的2/4~3/4的位置。通过对该基坑的分析,可以为相关工程提供参考。  相似文献   

6.
为了更加深入地研究深基坑开挖过程对基坑变形及围护结构的影响,运用Midas GTS软件对长春市某基坑开挖的施工过程进行模拟,并与现场实际监测数据进行对比分析.结果表明:基坑开挖过程中产生的坑底隆起位移及水平方向位移与实际监测结果基本趋于一致;基坑开挖会使围护结构产生朝向基坑内的水平位移,模拟计算得出的桩顶水平位移和围护...  相似文献   

7.
针对某市南北快速干线隧道17. 8 m深基坑工程,采用同济启明星Qimstar~?基坑支护结构软件,对基坑开挖过程中围护桩的受力情况进行模拟计算,并用测斜仪对围护桩的水平位移进行现场实时监测,研究桩体受力特点及变形规律.结果表明:模拟结果与监测结果在数值上比较接近,且变化趋势一致;桩身最大水平位移与基坑土层的开挖深度密切相关,随开挖深度的增加而发生非线性增大;受基坑时空效应的影响,桩体最大变形部位不断下移,桩身形状也由最初的前倾形曲线逐步向弓形曲线发展,最终在距基坑设计开挖总深度的2/3处达到11. 25 mm的最大值;在基坑底板浇筑完成后,围护桩变形趋于稳定.  相似文献   

8.
结合合肥市某雨水调蓄池深基坑工程,运用MIDAS三维有限元软件模拟全过程施工工况,对比分析了“桩墙合一”支护结构与传统临时支护结构下基坑开挖时支护结构内力与位移变形规律。研究结果表明:深层水平位移方面,传统临时结构围护桩变形是新型结构的1.74倍;弯矩方面,传统临时结构围护桩变形是新型结构的3.64倍,地下室外墙变形是新型结构的5.08倍;剪力方面,传统临时结构围护桩变形是新型结构的2.72倍,地下室外墙变形是新型结构的4.88倍。这一结果表明,“桩墙合一”结构可大幅度提高基坑整体稳定性,故应加大围护桩永久化技术在实际工程中的应用。  相似文献   

9.
目的 推导顶部带撑条形基坑排桩围护体系的桩顶位移表达式.方法 以条形基坑常用的带顶部支撑排桩支护体系为研究对象,考虑实际施工过程以及冠梁的影响,基于最小势能原理推导了支护桩变形的简化公式,并对影响变形的支护参数进行分析.结果 桩顶最大位移δmax随着悬臂开挖深度增加线性增加,且在相同开挖深度下,悬臂开挖深度所引起的桩顶位移要明显大于撑后开挖深度所引起的桩顶位移;桩顶位移随地基土水平抗力系数m值增大而迅速减小;桩顶位移随地面荷载q线性增长,但增速缓慢.结论 悬臂开挖对桩顶位移影响较大,尽快加撑有利于控制基坑变形;地基土水平抗力系数m对桩顶位移影响较大;桩顶位移随地面荷载q增长而线性缓慢增大.  相似文献   

10.
随着城市地铁线路穿越山地环境的日益增多,邻近边坡作为一种不利于施工的边界条件变得越发难以避免.边坡偏压影响下地铁车站基坑稳定性分析对于支护参数的选取与工程安全的控制具有重要意义.本文依托深圳轨道交通2号线莲塘口岸站工程,通过建立FLAC二维模型对不同偏压条件下的地表沉降、围护桩变形及剪应力变化规律进行分析.结果表明:地表沉降范围及最大沉降值均随边坡高度的增加而增大,偏压变化对于远坡桩的变形影响较小,但对于近坡桩的影响尤为明显.为定量分析偏压影响下地表及围护桩的变形规律,对结果进行了数据拟合并获得了地表最大沉降值、围护桩桩顶变形、围护桩最大变形及剪应力与边坡高度的关系公式.此外,分析表明随边坡高度的增加,基坑围护墙体的最大剪应力分布于基坑底部,此种情况在工程中需给予重点关注.  相似文献   

11.
采用FLAC3D软件对明挖地铁车站围护结构受力变形进行模拟,并将计算结果与现场监测数据进行对比分析.采用所建立的数值模拟方法,对多种预加轴力加载方案中桩身水平变形进行对比分析;研究支撑刚度变化与围护结构变形的关系、围护桩刚度变化与围护结构变形的关系.主要结论有:1)钢支撑预加合理大小的轴力能防止和减少围护结构产生过大的变形,钢支撑预加轴力建议取设计值的80%;2)对变形要求严格的工程中,可加大钢支撑的刚度来减小基坑顶部的水平位移;3)随着围护桩桩径增加,桩身水平变形明显减小,但围护桩直径过大,桩径再增大,控制桩身变形的效果并不明显,设计中从控制基坑变形角度出发,兼顾降低工程造价,选取适当的桩径大小.  相似文献   

12.
结合广州某软土深基坑工程实例,建立了地下连续墙、钢筋混凝土内支撑和土层的二维有限元模型,对深基坑开挖过程进行数值模拟.研究结果表明:随着基坑开挖深度的增大,围护结构水平位移增大,最大水平位移的位置由桩顶往下移,而且围护桩水平变形曲线发展形态呈现出向坑内凸的“大肚形”,与实测结果基本一致.支撑结构对减小基坑围护结构的变形起着重要作用,无支撑结构的桩体水平位移最大值达到24.6 mm;土体弹性模量及围护结构刚度对基坑围护结构变形影响较大,桩体水平位移随着土体弹性模量及围护结构刚度的增大而减小.  相似文献   

13.
针对北京地铁17号线某盾构竖井基坑工程开挖深度大、作业空间小的难点,围护结构首道支撑位置采用新型装配式钢管混凝土(简称P-CFST)支撑结构,扩大了支撑间距,便于基坑开挖、出土和支撑架设作业. 利用ABAQUS软件建立三维有限元模型,开展基坑开挖全过程数值模拟. 在工程实施过程中,对支撑轴力、围护桩水平位移、桩顶水平位移和地表沉降进行系统监测,保证了P-CFST支撑和钢支撑组合支护下的基坑施工安全,研究盾构竖井围护结构变形的空间效应、地表沉降曲面形态、不同位置处的支撑轴力关系等. 由模拟和监测结果的分析表明:围护桩同一深度上变形呈现抛物线形状或“盆形”,空间效应对盾构井围护结构变形的影响主要发生在距离基坑阴角小于8 m的范围内;基坑附近地表沉降等值线形状经过“圆弧形”-“陀螺形”-“梯形”变化,最大地表沉降位置经历由近及远、再向基坑靠近的移动过程;首道P-CFST支撑轴力对地层开挖、支撑架设等工况的影响更加敏感,大于架设深度更大的2、4道钢支撑轴力. 盾构竖井基坑工程内撑式围护结构首道支撑选用高刚度、高承载力的P-CFST内支撑,扩大了设计间距,围护结构和周围地层变形得到了有效控制.  相似文献   

14.
杭州某深基坑围护失稳原因分析   总被引:1,自引:0,他引:1  
通过分析某深基坑围护结构失稳现象,认为在软土中锚拉排桩的理论计算模型与实际工作状态之间的位移差距是导致围护失败的主要原因;在基坑施工分区块分阶段进行的工程,用前期获得的位移监测数据反演围护体系中的物理量变化或修正计算模式本身是保障围护安全的必要手段。  相似文献   

15.
研究基坑工程下卧既有地铁隧道的变形规律,可以为基坑安全施工、控制隧道变形、提高隧道运营的安全稳定提供参考依据。文章依托青岛梅岭东路地下通道工程,基于Mindlin解与弹性地基梁理论,推导了基坑工程开挖时隧道附加应力与变形量的计算公式,并采用有限差分软件,模拟基坑工程开挖对下卧既有地铁隧道的变形影响,对比分析了地表沉降和地层竖向变形的理论、实测和数值结果。结果表明:基坑开挖时,距钻孔灌注桩<20 m,围护桩后地表沉降与测点距围护桩距离成正相关;隧道衬砌结构竖向和水平位移分别与基坑开挖深度成正相关,至基坑开挖完成后,其竖向和水平最大位移分别为9.35和2.15 mm。  相似文献   

16.
临近既有建筑物的地铁车站施工时,车站基坑开挖动态施工过程,会对周围环境产生空间效应.以某滨海城市地铁车站基坑施工为研究对象,研究了临近建筑物处复杂环境下地铁车站施工开挖的时空效应,运用数值模拟计算并对比了实际监测结果.结果表明:临建筑物车站基坑开挖过程中地层最大有效应力位置不断上抬,并在基坑底部出现应力集中现象,地铁车站开挖施工必须考虑时空效应.  相似文献   

17.
随着近年来高层建筑的大规模建设,基坑开挖深度逐渐增大,由于深基坑通常位于城市的繁华地带,且常常紧邻各种建筑物,如何处理好基坑开挖及支护等施工过程对周边环境的影响,成为基坑工程研究的关键。本文以近接浅基础建筑物的桩锚支护结构深基坑为工程背景,基于现场实测数据深入分析了桩体变形、桩顶位移和建筑物沉降等变化规律,基于Plaxis有限元软件建立数值模型,经模型计算结果与现场监测数据对比选取合理的土体本构模型,探讨了邻近建筑物基础位置和地基附加应力两个关键参数对桩锚支护结构基坑与邻近建筑物本身的影响规律。研究表明:混凝土支撑和冠梁在控制围护桩顶变形的同时会增大坑角效应的影响范围;对于基坑开挖卸载问题,HS模型相对于MC模型具有更准确的模拟效果;基坑施工主影响区域约围护结构后方2.5He(基坑开挖深度),建筑物平均沉降最大值和倾斜度最大值位置分别位于距围护结构约0.6He和1.1He处;建筑物平均沉降值δva最大值位置与地表沉降最大值位置吻合,倾斜度最大值位置约位于地表沉降曲线反弯点处;针对本工程,当建筑物基础埋深为2.5m,基坑围护桩与建筑物中心距离在7.5-52.5m范围内变化时,建筑物平均沉降和倾斜度最大值分别约为8.3mm和0.00025;平均每增高一层建筑物,其沉降值和倾斜度分别增加约0.9mm和0.7×10-4,基坑围护结构最大侧移量增加1.4-2.0mm,其增量随层数增高而增加。  相似文献   

18.
以煤矿储煤仓基坑工程为对象,结合工程现场实际,模拟储煤仓基坑工程施工过程中可能发生的非正常情况下的施工现象,借助有限元分析方法模拟基坑土体及支护结构在非正常状况下的受力与变形特性.结果表明:钢支撑没有预加轴力对围护桩的受力和变形影响较大;桩体嵌固深度不足对位移影响不明显,但对桩体应力增大明显.  相似文献   

19.
根据某深基坑桩锚支护结构的支护特点及其周边环境情况,制定了相应的监测方案。重点对基坑护壁桩顶水平位移、基坑周边地表沉降及基坑附近原有建筑的位移进行监测。监测结果表明:基坑周边变形最大位置处于基坑每边的中间部位和基坑阳角处;预应力锚杆能够有效抑制支护结构的水平位移和沉降;基坑周边附近建筑物位移受基坑开挖速度、锚杆设置时间等因素影响,具有明显的时间效应和空间效应。监测结果为现场施工安全和合理组织施工提供了可靠的依据。  相似文献   

20.
本文以合肥地铁一号线青阳路站基坑工程为背景,利用MIDAS GTS NX有限元软件选取基坑典型控制截面进行二维建模,分析了对称与非对称两种堆载下支护桩水平位移随开挖深度的变化规律,对比了不同挖深下两种荷载情况围护桩最大水平位移值及其发生位置。结果表明,基坑两侧堆载的形式对支护桩的水平位移有明显影响;非对称堆载作用下支护桩水平位移呈明显不对称性,堆载大的一侧水平位移值较大且发生位置较浅。本文可为相关基坑工程的设计开挖提供参考借鉴。具有一定的科技应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号