共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
利用废弃混凝土制备再生胶凝材料 总被引:13,自引:0,他引:13
为了提高废弃混凝土再生资源的利用效率,提出实现各组分高效再生利用技术路线和方法.将分离出来的水泥石组分经过低温煅烧处理,制备得到可再次水化并形成胶凝能力的再生胶凝材料.利用X射线衍射、扫描电子显微镜、力学测试等手段对其矿物组成、水化硬化过程等进行了研究.实验结果表明:不同煅烧温度下制备得到的再生胶凝材料矿物组成及其结构不同,使其水化活性存在差异.其中在650℃煅烧得到的再生胶凝材料以不完全结晶的β-C2S矿物相为主要成分,具有优良的水化胶凝能力. 相似文献
5.
6.
在“双碳”目标的背景下,新型生物质炭材料的开发及其在电化学储能领域中的应用引起了人们广泛的关注。在各种优化生物质炭材料性能的方法中,元素掺杂能够解决比容量低、稳定性差的问题,为提高生物质炭材料电化学性能提供了一种简单、有效的方法和策略。本文从植物基、动物基和微生物基三方面介绍了元素掺杂生物质炭材料的来源,并根据掺杂元素的种数将元素掺杂生物质炭材料归纳为单元素掺杂和多元素共掺杂。回顾了元素掺杂生物质炭材料在超级电容器、锂离子电池、钠离子电池、锂硫电池等电化学储能器件中的应用,在此基础上分析了其化学组成和微观结构对电化学性能的影响。同时对其今后的发展和商业化前景做出展望,指出掺杂元素的种类和含量的调控、制备方法和工艺的优化、生物质自掺杂属性的激活仍是目前亟待解决的问题和未来的发展方向。 相似文献
7.
以柚子皮为碳源(GC),高温氧化碳化(GCO)处理后采用K2CO3活化制得GCO600,最佳优化产物GCO600-14具有丰富的网状孔隙,其比表面积达661.7 m2/g。三电极体系中,在1 A/g时,GCO600-14的比电容为413 F/g,电流密度扩大30倍后仍可达到2 896 F/g,为原先的70%;循环5 000圈后比电容仍未原来值的96%。构建的对称性电容器GCO600-14//GCO600-14能量密度为26、20.2 (W·h)/kg时,相应的功率密度分别为720、20 800 W/kg。说明GCO600-14作为新型的、环境友好的储能材料具有潜在的应用前景。 相似文献
8.
为得到高储能特性的超级电容器电极材料,以价格低廉的生物质——海带为碳源、三聚氰胺为氮源,通过聚合-NaOH活化法合成出纳米级氮掺杂多孔石墨化碳材料(NPGC)。通过XRD、BET、Raman和XPS测试手段对其进行了表征,结果显示:片层结构的NPGC具有大的比表面积(1771 m~2/g)、高的氮含量[x(N)=6.27%]和良好的石墨化强度(I_D/I_G=2.84)并对材料进行了循环伏安、恒电流充放电和交流阻抗性能测试,结果表明:在电流密度为1A/g时,NPGC比电容高达267F/g,5000次恒流充放电循环后,其比电容仍为初始比电容的99.9%,具有优异的储能特性。 相似文献
9.
电化学储能器件的性能很大程度上决定于其电极材料。碳材料具有来源广泛、化学稳定性好、易于调控、环境友好等优点,被广泛应用于各类能量存储系统,但仍存在能量密度低、倍率性能差等问题。本文从碳材料孔结构调控、杂原子掺杂、与金属氧化物复合三个角度,综述了构建高性能碳基储能材料的设计合成策略,介绍了其在锂/钠离子二次电池、超级电容器等领域的研究进展,对几种方法策略的优缺点进行了总结,并对未来的研究方向进行了展望。本文对高性能碳基储能电极材料的设计开发具有积极意义。 相似文献
10.
11.
多孔炭材料具有导电性好、结构稳定、资源丰富、价格低廉的天然优势,既可直接作为电极材料,构建炭基电化学储能器件,又可与非炭电活性材料复合,起到传输电子、缓冲体积膨胀及调节界面反应的作用,在电化学储能器件中一直发挥着不可或缺的作用。结合本文作者课题组的研究工作,本文总结了多孔炭制备及孔结构和形貌的调控方法,分析了各方法的优缺点;并以超级电容器、锂离子/钠离子电池和锂硫电池为代表,阐述了多孔炭材料在电化学储能领域的作用及应用研究现状,讨论了电化学储能器件对多孔炭材料的结构与性能要求,指出了多孔炭在电化学储能应用中存在的局限性,并对多孔炭在这些储能领域的研究和发展趋势做出展望。 相似文献
12.
我国是发展中国家,保护好生态环境是未来发展不可忽视的问题,当施工现场出现废弃材料之后,可通过施工现场废弃材料的节能低碳利用,解决环境污染问题,让可持续发展的绿色理念,实实在在落实到我们的生活中,如此一来就能从根本上解决部分废弃材料的浪费问题,包括废弃材料处理不当而引发的环境污染问题等,更好的保护我国生态环境. 相似文献
13.
生物质碳材料因具有原料丰富、成本低、易得、生态友好、轻质、超大表面积和高介电损耗等优点而被广泛用于电工、环境、吸附以及储能等领域。综述了近年来生物质碳材料在相关领域的应用,并展望了该材料未来的发展方向。 相似文献
14.
稻壳制备高性能材料研究进展 总被引:8,自引:0,他引:8
在分析了稻壳的组成、结构与形貌特点的基础上,综述了用稻壳为硅源制备高纯SiO2,SiO2气凝胶等,用稻壳为碳源制备高比表面积活性碳及其衍生材料等高性能材料,用稻壳制备纤维及其在制备有机无机复合材料方面的应用,提出了稻壳研究的发展方向. 相似文献
15.
16.
18.
电极材料是影响电化学储能系统性能的主要因素,目前,对其性能改善的研究主要集中于结构的优化和杂原子的引入两个方面。以三聚氰胺树脂为前驱体制备的碳基材料凭借其丰富的孔道结构和高含量的氮原子掺杂双重优势,在电化学储能设备的电极材料的应用中表现出高电容性能和出色的循环能力。本文从活化法、模板碳化法、混合聚合物碳化法等孔道控制工艺,探讨了孔道结构对于材料性能的影响。针对当前主流研发的电池和超级电容器,对以三聚氰胺树脂为原料制备的碳基材料展开综述,并分析其研究现状与发展趋势。 相似文献
19.
以法国梧桐絮为原料、KOH为活化剂,通过碳化制备多孔纤维碳材料,并在此基础上组装了超级电容器器件。通过SEM、EDS、XRD、Raman、FTIR、BET等对制备的多孔纤维碳材料进行表征,并研究了多孔纤维碳材料电极的电化学性能。结果表明:在扫描速率为50 mV·s~(-1)时,800℃下碳化制备的梧桐絮多孔纤维碳材料电极的比电容可以达到236 F·g~(-1);所组装电极在循环10 000次后,比电容仍维持原来的99.8%,表明梧桐絮多孔纤维碳材料在超级电容器领域有巨大的应用潜力。 相似文献