首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, poly (ether-block-amide) (Pebax-2533) based mixed matrix membranes were prepared by incorporating various contents of synthesized zeolitic imidazole framework (ZIF-8) nanoparticles into the polymer matrix. The membranes were fabricated via a solution casting–solvent evaporation technique. The results of gas permeation through the membranes revealed that the addition of the ZIF-8 into the polymer matrix enhances both permeability and CO2/CH4 selectivity values. As an example, for the mixed matrix membrane comprising 25 wt% of ZIF-8, CO2 permeability and ideal CO2/CH4 selectivity values are 269.73 Barrer and 9.31, respectively, while the corresponding values are 187.54 Barrer and 7.25 for the neat membrane.  相似文献   

2.
Membrane processes are economical techniques which have attracted many attentions in petroleum engineering particularly in the gas separation, recently. In this study, effective mixed matrix membranes were prepared using polyether-block-amide (Pebax-1074) as base polymer and ZIF-7 nanoparticles with different loadings as fillers. X-ray diffraction (XRD), Fourier transform infrared (FTIR) and field emission scanning microscopy (FESEM) analyses were used to characterize the synthesized nanoparticles and membranes. To investigate performance of the membranes, permeation experiments of the CO2 and CH4 through the membranes were carried out at pressure of 3 bar and temperature of 30°C. The obtained results indicated that the mixed matrix membranes have higher CO2/CH4 selectivities compared to the neat membrane.  相似文献   

3.
Abstract

Membrane technologies as conservative approaches have absorbed much attention in chemical and petroleum engineering, recently. The current research presents the preparation of effectively mixed matrix membranes (MMMs) using polyether-block-amide (Pebax-1657) as a polymeric matrix and zinc oxide (ZnO) nanoparticles with various contents (0.0, 2.5, 5.0, 7.5, and 10.0?wt%) as a filler. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and field emission scanning microscopy (FESEM) were conducted to characterize the prepared membranes. The membrane performance was evaluated by caring out permeation experiments of the CO2 and CH4 at a pressure of 3?bar and temperature of 30?°C. Based on the obtained results, the CO2 permeability and ideal CO2/CH4 selectivity increased about 13 and 21%, respectively at 10.0?wt% loading of ZnO in the polymer matrix.  相似文献   

4.
将水热合成法制备的氨基碳点与聚酰亚胺复合得到混合基质膜。通过SEM、FT-IR、XRD和DSC考查了氨基碳点掺杂质量分数对混合基质膜形貌和结构的影响。氨基碳点表面的氨基可以提供碱性环境,同时增加了膜内的自由体积,促进CO2传递。当氨基碳点掺杂质量分数为0.3%时,混合基质膜的CO2分离性能最佳,其CO2、CH4、N2渗透通量分别为85.87 barrer、1.69 barrer、2.62 barrer,CO2/CH4、CO2/N2选择性分别为50.81和32.77。   相似文献   

5.
Removal of carbon dioxide from methane is a critical issue in the gas sweetening and treatment units. The aim of this study is to investigate the capability of PES/Pebax composite membrane in order to CO2 removal from the CH4. In this regard, permeability values of both carbon dioxide and methane have been measured. The ranges of temperature and pressure used for pure gases experiments were 20–50°C and 2.5–10 bar, respectively. Moreover, influence of CO2 concentration on the CH4 permeability and its selectivity was studied. Results indicated that the pressure and temperature have significant influence on permeability and selectivity. In addition, for the gas mixtures, experiments were carried out at 5 bar and 35°C. Results also indicated that at higher CO2 concentrations the CO2 permeability increased significantly.  相似文献   

6.
目的 页岩储层中的裂缝系统对CH4产量和CO2封存量有着重要的影响,不同的储层地质特征有其对应的最优压裂方案。对鄂尔多斯盆地延长组页岩储层人工裂缝参数对CO2封存和CH4开采的影响进行分析。方法 基于鄂尔多斯盆地延长组页岩储层地质条件建立了页岩基质-裂缝双孔双渗均质模型,分析CO2增强页岩气开采技术(CO2-ESGR)中人工裂缝半长、裂缝宽度、裂缝高度、裂缝间距和裂缝数量对CO2封存量和CH4产量的影响。结果 CO2封存量和CH4产量与裂缝半长、裂缝宽度和裂缝高度呈正相关,其中裂缝宽度的影响最大,从5 mm增加到25 mm时,最多可使CO2封存量和CH4产量分别增加112.69%和87.11%。裂缝间距和裂缝数量增加可提高CO2封存量和CH4产量,但水平井长度相同时裂缝数量增加对CO...  相似文献   

7.
The separations of the CO2/N2 and CO2/CH4 gas pairs using supported ionic liquid membranes (SILMs) with the immobilized ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate (bmim[BF4]) and 1-butyl-3-methylimidazolium bis(2-ethylhexyl)sulfosuccinate (bmim[doc]) have been compared. The temperature dependences of the gas permeability, diffusion, and solubility coefficients have been obtained experimentally, and the temperature dependence of selectivity has been calculated. It has been found that the selectivity of membranes based on bmim[BF4] slightly decreases with temperature and the separation selectivity of CO2/N2 and CO2/CH4 systems on the membranes impregnated with bmim[doc] is almost independent of temperature.  相似文献   

8.
In this study, the semi-clathrate hydrate dissociation pressure for the CO2+N2, CO2+H2, CO2+CH4, and pure CO2 systems in the presence of different concentrations of TBAB aqueous solutions is predicted using a strong machine learning technique of multi-layer perceptron neural network (MLP-NN). The developed model, with an overall correlation coefficient (R2) of 0.9961 and mean square error (MSE) of 5.96E?02, presented an excellent accuracy in prognosticating experimental data. A complete statistical evaluation performed to promise the strength and generality of the multi-layer perceptron artificial neural network (MLP-ANN). In addition, the applicability of the proposed network and quality of experimental data was assessed through the Leverage approach.  相似文献   

9.
In this study, cubic and tetragonal structures of MOF-5 (C-MOF-5 and T-MOF-5) were successfully synthesized, characterized and incorporated into cellulose acetate (CA) polymer matrix in the range of 6, 9 and 12 wt % to fabricate mixed matrix membranes (MMMs). The effects of smaller pore size of T-MOF-5 and more ZnO molecules in T-MOF-5, on the H2 and CO2 permeation properties of C-MOF-5/CA and T-MOF-5/CA MMMs were investigated. The all novel MMMs were prepared using the solution casting method and characterized by FTIR, TGA and SEM. SEM images as well as results of FTIR and TGA analyses confirmed good adhesion between both MOF-5s and CA matrix. Addition of both C-MOF-5 and T-MOF-5 into the CA improved the gas transport properties of the CA, especially in H2 separation. The H2/CO2 selectivity continued the increasing trend at 9 wt % and did not significantly reduce even at 12 wt % due to good adhesion between both MOF-5s and CA. The highest H2/CO2 selectivity was obtained at 12 and 9 wt % loading of C-MOF-5 and T-MOF-5, respectively. By changing the filler from C-MOF-5 to T-MOF-5, the increasing and reducing of adsorption site of H2 and CO2 (respectively), and also reducing in pore size, caused the appearance of H2 permeability to not change much but the CO2 permeability to reduce. Accordingly, the H2/CO2 selectivity in all T-MOF-5/CA MMMs is higher than that in all C-MOF-5/CA MMMs. According to obtained results, the activated MOFs (i.e., C-MOF-5 in this study) are not always the best choices for separation process.  相似文献   

10.
Abstract

The Kinetics of CO2 reforming of natural gas to produce synthesis gas (CO + H2) has been investigated using 2 g of 0.5% wt of each of the catalysts; rhodium, ruthenium and iridium supported on γ-alumina. The experiments were carried out in a tubular reactor at three temperature levels namely 600, 700, 800°C and four gas weight hourly space velocities; 18000, 36000, 45000, and 60000 ml g?1 h?1. The reaction was found to obey first-order kinetics for the depletion of both of the reacting components; CH4 and CO2 on all the investigated catalysts. At the same temperature, CO2 had a higher reaction rate constant, k', as compared to CH4 for all the catalysts. This was more pronounced for Rh/γ-alumina catalyst, which occupied the highest reaction rates. Activation Energies were calculated from the Arrhenius relation.  相似文献   

11.
ABSTRACT

Nickel catalyst is an effective catalyst for reforming CH4 with CO2. The reaction between CO2 and CH4 at 1073 K. in the pressure of 0·1 MPa has been studied over different materials supported nickel metal in a fixed-bed reactor. Different catalysts before and after reaction were characterized by SEM, XRD, XPS. Results shows that CO and H2 are basically produced at the same ratio. When the feed ratio CO2/CH4 is less than 0·5, less C2?C4 hydrocarbons are detected. When the feed ratio CO2/CH4 is 1, Ni/a- Al2O3 catalyst has the highest activity. However, when the feed ratio CO2/CH4 is greater than 1, Ni/y- A1/O3, Ni/a- A12O3, Ni/SiO2 and Ni/HZSM-5 had higher activity; Ni/clinoptilolite basically no activity. Different kinds of carbon deposit are established.  相似文献   

12.
Ordered mesoporous Fe2O3 was synthesized using cetyltrimethylammonium chloride (CTAC) and polyethylene glycol octadecyl ether (Brij 76) surfactant templates. The gel time was monitored as a function of the concentration ratio of precursor to the surfactant. As-prepared FeOOH gels were extracted in ethanol to remove the surfactant and calcined at 200–400°C for 6 h so that α-Fe2O3 is produced. The FTIR spectra of these gels reveal complete removal of surfactant and water impurities and the presence of Fe-O vibrations. TEM images show ordering of mesopores in the gels prepared using surfactant templating and no ordering of the pores in the gels prepared without surfactant. The gels after calcinations were mixed with aluminum nanoparticles to prepare nanoenergetic composites. The burn rate of the nanocomposites containing ordered mesoporous Fe2O3 mixed with Al nanoparticles was compared with the one containing Fe2O3 with no ordering of mesopores and Al nanoparticles.  相似文献   

13.
Abstract

Among all enhanced oil recovery (EOR) scenarios, gas injection seems to be promising for implementation in naturally fractured reservoirs. The use of CO2 has received considerable interest as a method of EOR but a major drawback is its availability and increasing cost. Therefore, an alternative gas like CH4 or N2 must be considered to meet the economic considerations. To investigate the efficiency of oil recovery by CO2, N2, and CH4 injection in fractured carbonate rock, a series of experiments was designed. Both miscible and immiscible schemes for gas injection were carried out on a low-permeable outcrop carbonate rock that was surrounded by fracture, established with a novel experimental method. The experiments aimed to investigate the potential of oil recovery by secondary and tertiary gas injection under high-temperature conditions. The matrix block was saturated using a recombined mixture of Iranian live oil, and by pumping water into the annular space, the space between rubber sleeve and outer jacket, high overburden pressure was exerted to obtain the desired homogeneous saturation. Using a back-pressure regulator, the pressure was kept above the bubble point pressure. The inlet was attached to a constant pressure pump injecting gas or water above the bubble point pressure, and the overburden pressure was removed gradually and the inlet fluid inflated the rubber sleeve. The amount of produced water from the annular space was recorded to estimate the distance between the rubber sleeve and sand face. This distance creates the fracture surrounding the core. Gas was injected into the fracture at pressures above the bubble point of the oil. Oil recovery as a function of time was monitored during the experiments. Results from both secondary and tertiary gas injection experiments indicate that CO2 injection at elevated pressure and temperature is more efficient than N2 and CH4 injection.  相似文献   

14.
Separation of a mixture of CH4+C2H4 gas by forming hydrate in ethylene production has become of interest,and the dissociation behavior of(CH4+C2H4) hydrate is of great importance for this process. The hydrate formation rate could be increased by adding a small amount of sodium dodecyl sulfate(SDS) into water. In this work,the kinetic data of CH4(18.5 mol%) +C2H4(81.5 mol%) hydrate decomposition in the presence of 1000 mg·L-1 SDS at different temperatures and pressures were measured with the depressurizing m...  相似文献   

15.
In this work we present a model for predicting hydrate formation condition to separate carbon dioxide (CO2) from different gas mixtures such as fuel gas (H2+CO2), flue gas (N2+CO2), and biogas gas (CH4+CO2) in the presence of different promoters such as tetra-n-butylammonium bromide (TBAB), tetra-n-butylammonium chloride (TBAC), tetra-n-butylammonium fluoride (TBAF), tetra-n-butyl ammonium nitrate (TBANO3), and tetra-n-butylphosphonium bromide (TBPB). The proposed method was optimized by genetic algorithm. In the proposed model, hydrate formation pressure is a function of temperature and a new variable in term of Z, which used to cover different concentrations of studied systems. The study shows experimental data and predicted values are in acceptable agreement.  相似文献   

16.
ABSTRACT

Asphaltene onset concentration and bulk deposition were measured for a typical live reservoir oil titrated with n-C6H14, n-C5H12, n-C4H10, C3H8, C2H6, CH4 and CO2 at 100° C (212 ° F) and 29.9 MPa (4340 psia). The concentration of titrant at asphaltene onset was observed to decrease approximately in a linear fashion with decreasing molecular weight of the paraffinic solvent; CH4 did not induce any asphaltene precipitation. Bulk deposition experiments were performed using a solvent: oil volume ratio of 10:1; the results indicated that the weight percent of asphaltenes precipitated increased exponentially with decreasing molecular weight of the paraffinic solvents. More importantly, the asphaltene molecular weight showed a maximum for n-C4H10 precipitated asphaltenes. Possible explanations for this unusual result are presented.  相似文献   

17.
Mass transfer properties of fluorinated polycarbonate siloxanes (PCS-F) for some gases and hydrocarbons depending on the chemical nature of the carbonate and siloxane blocks and the composition of the block copolymers have been investigated. As compared with poly(dimethylsiloxane)s, polycarbonate siloxanes, and methyltrifluoropropylsiloxane homopolymers, fluorinated polycarbonate siloxanes exhibit a higher separation selectivity α for CO2/N2, CO2/O2, and CO2/CH4. At a 30 wt % concentration of trifluoropropyl groups, PCS-F have α values of 4.9 and 17.8 for O2/N2 and CO2/CH4, respectively. The PCS-F copolymers exhibit a high resistance to hydrocarbons, retaining the mechanical properties in the swollen state.  相似文献   

18.
To improve the membrane permeability and separation properties in gas separation processes and thermopervaporative (TPV) recovery of butanol from model fermentation mixtures, hybrid membranes based on polymers with an extremely high free fractional volume—polytrimethylsilylpropyne (PTMSP) and hypercrosslinked polystyrene (HCL-PS)—have been first prepared and experimentally studied. The composite membranes have been fabricated using the commercial sorbent Purolite Macronet MN-200 exhibiting high sorption capacity for organic solvents. It has been found that in the hybrid membranes, HCL-PS sorbent particles are nonuniformly distributed throughout the volume: they are located in the surface layer of the membrane. It has been shown that the introduction of a small amount of a modifying component (0.5–1.0 wt %) into the PTMSP matrix improves the time stability of transport properties and increase by a factor of 1.5–2 the permeability coefficients of the material to light gases (N2, O2, CO2, CH4) and butane vapor. It has been found that hybrid PTMSP/HCL-PS membranes have higher separation factors than those of PTMSP membranes in the TPV separation of a butanol/water binary mixture.  相似文献   

19.
Abstract

The authors quantitatively investigates the recovery efficiency, pattern behavior, and relative permeability of (a) condensate following supercritical carbon dioxide (CO2) injection, methane (CH4) injection, and the injection of their mixtures; and (b) natural gas of various compositions following pure supercritical CO2 injection. A high-pressure high-temperature experimental laboratory was established to simulate reservoir conditions and to perform relative permeability measurements on sandstone cores. This work is part of an integrated enhanced natural gas and condensate recovery project conducted for a local reservoir in Western Australia. This data will help the operators develop operational and design strategies for their present and future EOR projects.  相似文献   

20.
Seven types of activated carbon were used to investigate the effect of their structure on separation of CO2 from (H2 + CO2) gas mixture by the adsorption method at ambient temperature and higher pressures. The results showed that the limiting factors for separation of CO2 from 53.6 mol% H2 + 46.4 mol% CO2 mixture and from 85.1 mol% H2 + 14.9 mol% CO2 mixture were different at 20 C and about 2 MPa. The best separation result could be achieved when the pore diameter of the activated carbon ranged from 0.77 to 1.20 nm, and the median particle size was about 2.07 lm for 53.6 mol% H2 ? 46.4 mol% CO2 mixture and 1.41 lm for 85.1 mol% H2 + 14.9 mol% CO2 mixture. The effect of specific area and pore diameter of activated carbon on separation CO2 from 53.6 mol% H2 ? 46.4 mol% CO2 mixture was more significant than that from 85.1 mol% H2 ? 14.9 mol% CO2 mixture. CO2 in the gas phase can be decreased from 46.4 mol% to 2.3 mol%–4.3 mol% with a two-stage separation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号