首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the working space model of machining, an experimental procedure is implemented to determine the elastic behaviour of the machining system. In this paper, a dynamic characterization and vibration analysis has long been used for the detection and identification of the machine tool condition. The natural frequencies of the lathe machining system are required (Ernault HN400??France) according to three different situations with no cutting process are acquired. The system modal analysis is used to identify the natural frequencies. These frequencies are then compared to the ones obtained on the spindle numerical model by finite element method. This work is validated by experimental tests based on measures of the lathe machine tool frequencies domain. The main objective is to identify a procedure giving the natural frequency values for the machine tool components, in order to establish a better condition in the cutting process of the machine tool.  相似文献   

2.
汽车覆盖件模具的高速加工具有特征型面形状复杂、材料硬度大、结构尺寸大、表面精度要求高等特点,在高速切削加工过程中,属于难加工产品。残余应力的存在促使疲劳裂纹形成与扩展、促进腐蚀、促进模具的关键型面变形,因此汽车覆盖件尺寸的稳定性和加工质量与其密切相关。本文在数值模拟思想的指导下,利用有限元解法,研究了高速铣削加工表面的残余应力对加工变形的影响,给出了预测残余应力数值的解析模型,具有重要的理论及现实意义。  相似文献   

3.
根据材料变形的弹塑性理论,建立了材料的应变硬化模型,采用有限元仿真技术,利用有限元软件ABAQUS对中碳合金钢40CrNiMo切削过程中剪切层及切屑的形成进行仿真,分析切削加工区域的应力、应变的分布。该方法比一般的试验法更省时省力,在研究金属切削理论、材料切削性能及开发刀具产品方面有着工程应用价值。  相似文献   

4.
Due to high efficiency and accuracy, 3D finite element modeling has been an effective tool to analyze the laser forming process. The discretization of a given finite element model has a significant effect on the results of simulation. To reduce the lengthy computational time caused by excessive degrees of freedom while insuring an accurate solution, the minimum discretization requirements of finite element modeling of the laser forming process need to be determined. This paper investigates the effects of temporal and spatial discretization on the final angular deformation of the plate. Numerical results under different discretization conditions are examined. The minimum requirements for discretization of 3D finite element models for laser forming are established by examining the convergence of the numerical solutions with increased discretization. The numerical results are in good agreement with the experimental measurements.  相似文献   

5.
Finite element modeling of 3D turning of titanium   总被引:1,自引:1,他引:0  
The finite element modeling and experimental validation of 3D turning of grade two commercially pure titanium are presented. The Third Wave AdvantEdge machining simulation software is applied for the finite element modeling. Machining experiments are conducted. The measured cutting forces and chip thickness are compared to finite element modeling results with good agreement. The effects of cutting speed, a limiting factor for productivity in titanium machining, depth of cut, and tool cutting edge radius on the peak tool temperature are investigated. This study explores the use of 3D finite element modeling to study the chip curl. Reasonable agreement is observed under turning with small depth of cut. The chip segmentation with shear band formation during the Ti machining process is investigated. The spacing between shear bands in the Ti chip is comparable with experimental measurements. Results of this research help to guide the design of new cutting tool materials and coatings and the studies of chip formation to further advance the productivity of titanium machining.  相似文献   

6.
A numerical investigation of laser-assisted machining for Inconel 718 is presented. This study is based on a three-dimensional finite element model, which takes into account a new constitutive law of Inconel 718 as well as friction and heat transfer models at the tool-chip interface that are developed at the Aerospace Manufacturing Technology Centre (AMTC), of the National Research Council of Canada (NRC), Canada. The material flow stress is described as a function of the strain, the strain rate, and the temperature. The friction model accounts for the sticking and the sliding regions observed experimentally. The formulation of the heat transfer model is based on combining contact mechanics analysis with the solution of the thermal contact problem. The laser beam is modeled as a moving heat source, which is experimentally calibrated. To validate the three-dimensional finite element model, laser-assisted machining experiments were designed and carried out under different cutting conditions. The predicted cutting force and chip thickness are compared with the experimental results. The temperature, stress, strain, and strain rate fields in the primary deformation zone are investigated in order to reveal the plastic deformation process under laser-assisted machining operations.  相似文献   

7.
In machining, the percentage of heat flux that enters the cutting tool can have a critical impact on tool wear especially in dry cutting or high speed machining. In previous work, heat partition was evaluated by iteratively reducing the secondary deformation zone heat flux to the tool until the finite element simulated temperatures matched the experimental measured rake face temperatures. This follow-on work quantifies the contribution of primary zone heat flux to heat partition in machining. In this study, an analytical model was used to evaluate the rise in chip temperature due to primary deformation zone heat source. The heat partition and thermal modelling on the rake face was then conducted with an appropriate initial rake face temperature. Thus primary zone heat loads and shear-force-derived secondary zone heat flux were applied in finite element transient heat transfer analysis to evaluate heat flux into the cutting tool. External dry turning of AISI/SAE 4140 with tungsten carbide-based multilayer TiCN/Al2O3-coated tools was conducted for a wide range of cutting speeds between 314 and 879 m/min. Results further support the dominance of secondary zone heat flux on heat partition. The contribution of primary zone heat generation to the cutting tool heat flux in machining was less than 9.5 %. These findings suggest that, to address the thermal problem in machining, research and development should also focus on reducing friction on the rake face (e.g. coating innovations) and reducing contact areas (e.g. rake face design) in addition to the modification of shear angle and hence primary zone heat intensity.  相似文献   

8.
袁明 《机械与电子》2023,41(5):76-80
薄壁盘由于材料刚性较差等原因难以确保零件加工精度,容易引起变形,对此,提出了高温合金薄壁盘复杂零件加工变形控制方法。分析零件加工过程中产生的变形因素,包括夹装方式、刀具性能参数、工件自身因素、机床定位精度不够以及温度控制不佳等;确立所有工序历史误差源集合,生成误差传递矩阵,构建变形误差源诊断模型;针对不同误差源,提出针对性控制方法,通过最小二乘多项式拟合算法计算让刀误差,并对其补偿;通过有限元分析法建立工件几何模型,设立刚度控制函数,弥补工件自身缺陷;针对机床定位精度和温度分别设计控制函数,实现零件加工变形的综合控制。实验结果表明,所提方法明显减少了零件加工变形现象,保证了切削力平稳,提高了零件质量。  相似文献   

9.
In the machining process, the workpiece is under severe plastic deformation with large strain, high strain rate, and temperature. It is necessary to know the flow stress of workpiece material in such condition to better understand the mechanism of chip formation, tool wear and damage, etc. In this study, a Split Hopkinson Pressure Bar (SHPB) with synchronically assembled heating system was employed to study the flow stress similar to the deformation condition in the machining process. A phenomenological constitutive model was proposed by the regression analysis of the experimental results. Furthermore, orthogonal metal cutting processes were carried out by the finite element method (FEM). The cutting force predicted by the FEM showed good agreement with the experimental results, which confirmed that the proposed constitutive model can give an accurate estimate of the flow stress in the machining process.  相似文献   

10.
In this study, the commercial finite element software FORGE2005®, able to solve complex thermo-mechanical problems is used to model titanium alloy dry machining. One of the main machining characteristics of titanium alloys is to produce a special chip morphology named “saw-tooth chip” or serrated chip for a wide range of cutting speeds and feeds. The mechanism of saw-tooth chip formation is still not completely understood. Among the two theories about its formation, this study assumes that chip segmentation is only induced by adiabatic shear band formation and thus no material failure occurs in the primary shear zone. Based on the assumption of material strain softening, a new material law was developed. The aim of this study is to analyze the newly developed model's capacity to correctly simulate the machining process. The model validation is based on the comparison of experimental and simulated results, such as chip formation, global chip morphology, cutting forces and geometrical chip characteristics. A good correlation was found between the experimental and numerical results, especially for cutting speeds generating low tool wear.  相似文献   

11.
The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the machine tool separately, and the interaction between them has been always overlooked. In this paper, a novel simplified method is proposed to realize the simulation of IMPMT by combining use the finite element method and state space method. In this method, the transfer function of the machine tool is built as a small state space. The small state space is obtained from the complicated finite element model of the whole machine tool. Furthermore, the control system of the machine tool is integrated with the transfer function of the machine tool to generate the cutting trajectory. Then, the tool tip response under the cutting force is used to predict the machined surface. Finally, a case study is carried out for a fly-cutting machining process, the dynamic response analysis of an ultra-precision fly-cutting machine tool and the machined surface verifies the effectiveness of this method. This research proposes a simplified method to study the IMPMT, the relationships between the machining process and the machine tool are established and the surface generation is obtained.  相似文献   

12.
Workpiece deformation must be controlled in the numerical control machining process. Fixture layout and clamping force are two main aspects that influence the degree and distribution of machining deformation. In this paper, a multi-objective model was established to reduce the degree of deformation and to increase the distributing uniformity of deformation. The finite element method was employed to analyze the deformation. A genetic algorithm was developed to solve the optimization model. Finally, an example illustrated that a satisfactory result was obtained, which is far superior to the experiential one. The multi-objective model can reduce the machining deformation effectively and improve the distribution condition.  相似文献   

13.
Prediction of specific force coefficients from a FEM cutting model   总被引:1,自引:1,他引:0  
This paper presents a method to obtain the specific cutting coefficients needed to predict the milling forces using a mechanistic model of the process. The specific coefficients depend on the tool–material couple and the geometry of the tool, usually being calculated from a series of experimental tests. In this case, the experimental work is substituted for virtual experiments, carried out using a finite element method model of the cutting process. Through this approach, the main drawbacks of both types of models are solved; it is possible to simulate end milling operations with complex tool geometries using fast mechanistic models and replacing the experimental work by virtual machining, a more general and cheap way to do it. This methodology has been validated for end milling operations in AISI 4340 steel.  相似文献   

14.
Hard turning has become an alternative machining process for grinding processes of hardened steels. One challenge during hard turning is the increasing wear during the operation time of the tool and the hereby influenced workpiece surface and subsurface properties. This causes unfavorable changes of the microstructure and residual stress state or rather damages of the subsurface. Important factors are the contact conditions between the tool and the workpiece. The width of flank wear land influences the size of the passive force significantly. This has a direct impact on the subsurface properties of the workpiece. One solution is to modify the contact conditions and thereby the specific mechanical and thermal loads that are applied to the tool as well as to the workpiece. This article presents an experimental approach of modified corner radius geometry of cutting tools for hard turning processes. Hereby, the size and direction of the contact length of the cutting edge are adjusted as well as the load impact during machining. The aim is to reduce the tool wear performance. The results show the potential of the load-specific tool design concerning the tool wear and the workpiece subsurface properties. Furthermore, a new approach for predicting the process forces during hard turning is presented.  相似文献   

15.
The development of a model used to describe the mechanism by which vibration assisted machining reduces tool temperature is discussed, and correlations to resulting reduction in tool wear are presented. This model is applied to a newly developed ultrasonic, vibration assisted diamond turning device that allows for variation of vibration frequency and vibration amplitude via a direct drive actuator. It accommodates a wide range of vibration parameters, including vibration frequencies up to 40 kHz and amplitudes up to 8 μm, where the tool operates. The model uses the finite element method to predict cutting temperatures under conventional turning conditions (i.e., without vibration assistance). The results from the finite element analysis are then used in conjunction with a model developed for vibration assisted machining to predict the new temperature profiles. The modeling techniques and temperature histories for various vibration conditions are presented as well as experimental results that show the thermal advantages of applying tool vibration.  相似文献   

16.
The temperature rise of an ultra-precision machine tool has a great impact on machining accuracy. Meanwhile, the hydrostatic spindle system is the main internal heat source of the machine tool, which consists of a hydrostatic spindle and a direct current motor. Therefore, it is very significant to study the thermal behaviors of the hydrostatic spindle system. In this paper, an integrated heat-fluid–solid coupling model of the hydrostatic spindle system is built to simulate the heat generation process and the fluid–structure conjugate heat transfer. Then a finite volume element method (FVEM) is proposed by combining the advantages of the finite volume method (FVM) and the finite element method (FEM) with consideration of the interaction of the temperature field, thermal deformation, and eccentricity. Based on the proposed model and method, the thermal characteristics of the hydrostatic spindle system are studied by the two-way heat-fluid–solid coupling analysis. The temperature variations obtained by the simulation agree well with the experimental results, which validate the proposed model and method.  相似文献   

17.
张伟 《机械》2011,38(4):68-71
主要讨论了曲轴外圆复合车削刀架连杆机构的结构问题.由于刀架连杆机构在切削过程中容易产生变形,其强度和刚度直接影响着整个车床的加工精度,从而影响着被加工零件的表面粗糙度和形状误差,所以连杆机构的变形问题尤为重要.为了使刀架连杆机构简单、紧凑及变形量小,对连杆机构进了分析和讨论,采用ANSYS软件对连杆机构模型进行了有限元...  相似文献   

18.
Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-aixs machining, which sometimes only take one given point as the compensative point at each given cutter location. This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts. Based on an improved cutting force/heat model and finite element method(FEM) simulation environment, a deflection error prediction model, which takes sequence of cutter contact lines as compensation targets, is established. And an iterative algorithm is presented to determine feasible cutter axis positions. The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm. The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction, and is also validated with flank milling experiment by using five-axis machine tool. At the same time, the deformation error is detected by using three-coordinate measuring machine. Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods. The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts.  相似文献   

19.
Abstract

Adding ultrasonic vibrations to conventional turning can improve the process in terms of cutting force, surface finish and so on. One of the most important factors in machining is the heat generation during the cutting process. In ultrasonic-assisted turning (UAT) the tool tip also vibrates at very high frequency and this sinusoidal motion causes complexity in heat modeling of the cutting system. Modeling and simulation of cutting processes can help to understand the nature of process and provides information to select optimum conditions and machining parameters. In this article, a finite element model has been developed for predicting tool tip temperature in UAT. The effect of machining parameters including cutting speed, feed rate and amplitude of vibration on the tool tip temperature has been investigated. In order to simplify the machining process, the cutting experiment has been carried out in dry condition. The results showed that by applying ultrasonic vibration to the cutting tool, the tool tip flash temperature increases but in some condition its average value could be less than the conventional machining.  相似文献   

20.
High-speed machining (HSM) may produce parts at high production rates with substantially higher fatigue strengths and increased subsurface micro-hardness and plastic deformation, mostly due to the ploughing of the round cutting tool edge associated with induced stresses, and can have far more superior surface properties than surfaces generated by grinding and polishing. Cutting edge roundness may induce stress and temperature fields on the machined subsurface and influence the finished surface properties, as well as tool life. In this paper, a finite element method (FEM) modeling approach with arbitrary Lagrangian Eulerian (ALE) fully coupled thermal-stress analysis is employed. In order to realistically simulate HSM using edge design tools, an FEM model for orthogonal cutting is designed, and solution techniques such as adaptive meshing and explicit dynamics are performed. A detailed friction modeling at the tool–chip and tool–work interfaces is also carried out. Work material flow around the round edge cutting tool is successfully simulated without implementing a chip separation criterion and without the use of a remeshing scheme. The FEM modeling of the stresses and the resultant surface properties induced by round edge cutting tools is performed for the HSM of AISI 4340 steel. Once FEM simulations are complete for different edge radii and depths of cut, the tool is unloaded and the stresses are relieved. Predicted stress fields are compared with experimentally measured residual stresses obtained from the literature. The results indicate that the round edge design tools influence the stress and temperature fields greatly. An optimization scheme can be developed to identify the most desirable edge design by using the finite element analysis (FEA) scheme presented in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号