首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new oxygenate blend of propylene glycol monopropyl ether and ethylene glycol dimethyl ether in a proportion of 2:1 by mass was studied as a clean diesel fuel additive. When a diesel fuel was added with 15% (v) to 25% (v) of it, smoke and CO from a diesel engine were lessened by the maximum of 95.1% and 66.7%, respectively. NOx emissions did not change noticeably. HC emissions increased more than doubled. Engine in-cylinder peak pressure and ignition delay did not alter notably while in-cylinder pressure rising rate descended. Heat release rate fell down in premixing combustion whereas increased during diffusion combustion.  相似文献   

2.
柴油清净剂改善柴油机有害排放的研究   总被引:3,自引:0,他引:3  
有关柴油中添加具有清净分散作用的添加剂的研究已成为降低柴油机排放的重要课题。在同一台TY1100柴油机上分别使用试验用空白柴油、加0.15%长城牌LCD级润滑油的柴油样品和加0.15%石油磺酸钙清净分散剂的柴油样品,测定了柴油发动机排放气中各种有害组分的含量、发动机性能和燃烧特性。结果表明,在柴油中添加石油磺酸钙清净分散剂,可以降低柴油机的排放烟度和CO含量,特别是烟度的降低幅度较大。柴油机在高输出功率区域运转时,随着功率的增大,烟度的下降幅度增大。  相似文献   

3.
Fuel oils (numbers 1–6) are fractions of crude oil. The boiling point and carbon chain length of the fuel increases with fuel oil number. Viscosity increases with the number, and is needed to flow the heated heavy oil. No. 4 fuel oils are used as burner fuel for domestic and industrial heating and have to raise steam for power generation and marine propulsion. Recycling and rerefining are application processes for the treatment of petroleum-based heavy products by converting into reusable light products such as gasoline and No. 2 diesel fuel. Possible pyrolysis and cracking processes are appropriate. The purpose of this study is performed to obtain light products, especially gasoline and No. 2 diesel fuel from No. 4 fuel oil by the method of pyrolytic distillation. Sodium carbonate (Na2CO3) was used in pyrolysis as catalyst and the purified oil samples were blended separately with catalysts having a mass basis of 5% and 10%. If the objective is to maximize the yield of distillate producing from No. 4 fuel oil, a low temperature and a high heating rate process would be required. The yield of gasoline-like fuel was 10.6% in the noncatalytic conversion, while 13.3% was obtained in the catalytic conversion. The yield of No. 2 diesel-like fuel was 23.3% in the noncatalytic conversion, while of 32.6% was obtained in the catalytic conversion. The yield of No. 2 diesel-like obtained from the catalytic conversion was higher 39.9% than that of the noncatalytic conversion.  相似文献   

4.
ABSTRACT

Vegetable oils have chances to be used in Diesel engines as alternative fuels contributing to the solution of some agricultural, environmental and economical problems. Direct use of them has some technical problem yet but as blended fuels with diesel fuel or esters they have places on the application area. In this paper the effect of the compression ratio on ignition delay is investigated in an ASTM-CER engine working with four different types of vegetable oil of Turkish origin (sunflower, corn, soybean, and olive oil) blended with grade No.2-D diesel fuel at a ratio of 20/80 (v/v) and the results are compared with baseline diesel fuel. Longer ignition delay periods have generally been obtained for blend fuels ranking from olive oil to sunflower oil as compared to diesel fuel.  相似文献   

5.
The sulfur specification for diesel fuel has been tightened exponentially over the years. To help resolve this question, the authors aimed to develop a novel unsupported Ni-Mo sulfide catalyst with ultra-high hydrogenation performance, for the production of clean diesel fuel. This catalyst was prepared directly with ammonium tetrathiomolybdate and basic nickel carbonate as the catalyst precursors through the low-temperature solid-state surface reaction. XRD and HRTEM characterization results indicate that the stacking number of MoS2 layers is very high in the unsupported Ni-Mo sulfide. The evaluation results of model compound (dibenzothiophene) and FCC diesel fuel demonstrate that the unsupported Ni-Mo sulfide catalyst has excellent hydrodesulfurization activity and ultra-high hydrogenation performance, which can be attributed to the high stacking number of MoS2 layers.  相似文献   

6.
2.0 Mt/a工业加氢裂化装置设计原料为环烷基柴油,主要生产重石脑油和超低硫柴油.受市场环境变化影响,对产品结构进行了调整,最大量生产重石脑油和喷气燃料.通过调整产品切割点、增设分馏塔等措施实现了该目的.工业运转结果表明,以柴油为原料,该装置生产的重石脑油和优质喷气燃料的收率分别为52.98%,29.35%,高价值产...  相似文献   

7.
A new type of photocatalyst, La3+-Zn2+-Al3+-MoO42? layered double hydroxide (LDH) (La:Zn:Al = 1:7:2), was prepared by a complexing agent-assisted homogeneous precipitation technique. The LDHs were used as catalysts for the desulfurization of diesel oil under UV irradiation. As revealed by the results, the catalyst showed superior desulfurization efficiency and recycling performance. Under UV irradiation, the desulfurization efficiency was 84% in 60 min. In La3+–Zn2+–Al3+–MoO42? LDHs, the introduction of MoO42? increased the interlayer space for promoting the adsorption of dibenzothiophene, and MoO42? might act as the active sites for the oxidation of dibenzothiophene, resulting in the high desulfurization efficiency.  相似文献   

8.
A lab-scale experiment was set up to investigate the efficiency of addition 5% (w/w) individually of three different organic solid waste amendments to enhance the rate of degradation at 5% and 15% diesel oil in polluted soil during 18 weeks. A total of 81% and 42% oil loss was recorded in soil amended with soycake at 5% and 15% oil pollution, respectively. The measured δ13C signature of CO2 evolved from amending contaminated soil varied between –24 and –28‰. First-order kinetic model demonstrated that soycake had the highest rate of biodegradation of 0.114 days?1 at 5% oil pollution. The results clearly indicate that those treatments amended with organic wastes had the best efficiency on the biodegradation of soil contaminated with diesel fuel.  相似文献   

9.
中国石化北京燕山分公司为解决加氢裂化装置负荷低、厂内劣质柴油品质差的问题,在加氢裂化装置原料中掺炼一定比例的催化裂化柴油(催柴)或焦化柴油(焦柴)。介绍了加氢裂化装置分别掺炼催柴和焦柴的技术对比,由催柴改至焦柴后:精制反应器二床层出口温度下降8.6 ℃,精制反应器总温升下降19.4 ℃,精制反应器和裂化反应器总压降均减小;在转化率约为68%时,掺炼催柴时的氢耗为3.48%,掺炼焦柴时的氢耗约为3.10%;喷气燃料中芳烃体积分数由15.7%降至6.1%,烟点上升1.5 mm,柴油收率增加7.26百分点,十六烷值增加3个单位,尾油BMCI值降低0.7,综合能耗上升1.6 MJ/t。  相似文献   

10.
Abstract

Citric acid—neopentylene glycol—citric acid (CNC) triblock claw molecule as a fuel additive was applied as a diesel fuel low-temperature flow improver. Some of the other molecules—such as stearic acid and hexadecyl alcohol—are trapped with the above-synthesized claw molecule. The claw molecule, which is hydrophilic before the other molecules trapped into the suitable sites of the claw molecule, becomes soluble in diesel fuel. The claw molecule structure was further confirmed by 1H NMR and IR spectra. The cold filter plugging point of diesel of adding the claw molecule was measured and discussed. The experimental results showed that the newly developed low-temperature flow improver has a good sensibility to diesel of different batches and different composition. When dosage is 600 μg/g, the reduction value of cold filter plugging point is up to 6 units.  相似文献   

11.
目的回收利用炼厂燃料气中的C_(3)+及H_(2),提高经济效益。方法通过对不同来源的燃料气分析对比,找出其中富H_(2)、高C_(3)+燃料气。优化H_(2)利用及回收流程,增加脱氢膜面积,提高H_(2)回收量。利用催化装置和焦化装置的吸收稳定系统回收燃料气中的C_(3)+。结果技改总投资320万元,可回收C_(3)+1.23×10^(4) t/a,增效3000万元/年;H_(2)回收量可增加1050×10^(4) m^(3)/a,降低制氢成本1200万元/年。结论该方案充分利用炼厂现有吸收稳定系统及现有脱氢系统扩容,具有投资少、效益好、见效快的优点,对玉门炼化总厂高质量发展具有重要意义。  相似文献   

12.
Abstract

Oxidative desulfurization of fuel oil was investigated using a process consisting of oxidation and distillation steps. In the oxidation step, various organic carboxylic acid/H2 O2 systems, especially acetic acid/H2 O2, were used as oxidant. They oxidize both easy and refractory sulfur compounds and convert them into oxidized sulfur compounds. The oxidized sulfur compounds are finally removed from fuel oil by distillation in the presence of water. The sulfur content of fuel oil was decreased to levels as low as 20 ppm (up to 90%) in a short contact time, ambient temperature, and atmospheric pressure. The results showed that applying this process did not have any deleterious influence on the distillation characteristic, composition, and content of fuel oil that was examined. An artificial neural network, using back propagation (BP), was also utilized for modeling oxidative desulfuration process of fuel oil. The comparison between the output of ANN modeling and the experimental data showed satisfactory agreement.  相似文献   

13.
乙醇-柴油混合燃料的制备及其性能研究   总被引:1,自引:1,他引:0  
 研究了乳化剂种类、乳化剂含量、乳化剂之间配比及乙醇含量对乙醇-柴油混合燃料性能的影响,优化出乙醇-柴油混合燃料的乳化剂,将其添加于乙醇-柴油中,采用物理共混法制备出最优乙醇-柴油混合燃料。实验得出,阳离子乳化剂31381与非离子乳化剂1202在m(31381) :m(1202)=3:7下复配,制得乙醇-柴油混合燃料的最优乳化剂。在乙醇—柴油(乙醇质量分数为16%)中添加质量分数为3.3%的最优乳化剂,制备出的最优混合燃料在室温下能稳定存放6个月以上;透射电镜测定该混合燃料的粒径分布均匀;燃烧速率与0#柴油相当,而烟度较0#柴油降低60%;腐蚀性符合国家标准。  相似文献   

14.
In this study, the performance and emission characteristics of biodiesel blends of 10, 20, 30 and 50% from Schleichera Oleosa oil based on hydrodynamic cavitation were compared to diesel fuel, and found to be acceptable according to the EN 14214 and ASTM D 6751 standards. The tests have been performed using a single cylinder four stroke diesel engine at different loading condition with the blended fuel at the rated speed of 1500 rpm. SOME (Schleichera Oleosa Oil Methyl Ester) blended with diesel in proportions of 10%, 20%, 30% and 50% by volume and pure diesel was used as fuel. Engine performance (specific fuel consumption and brake thermal efficiency) and exhaust emission (CO, CO2 and NOx) were measured to evaluate the behaviour of the diesel engine running on biodiesel. The results show that the brake thermal efficiency of diesel is higher and brake specific fuel consumption is lower at all loads followed by blends of SOME and diesel. The performance parameter for B10, B20, B30 and B50 were also closer to diesel and the CO emission was found to be lesser than diesel while there was a slight increase in the CO2 and NOx. SOME produced by using hydrodynamic cavitation seems to be efficient, time saving and industrially viable. The experimental results revel that SOME-diesel blends up to 50% (v/v) can be used in a diesel engine without modifications.  相似文献   

15.
为了满足炼油企业减产柴油、降低柴汽比的产品结构调整需求,中国石化抚顺石油化工研究院开发了FDHC柴油中压加氢裂化技术。该技术采用加氢裂化-补充精制工艺流程,解决了中压加氢裂化喷气燃料馏分烟点偏低和装置运行末期产品质量下降等难题,通过优化原料构成、催化剂体系和操作参数,使之适用于加工直馏柴油原料,灵活增产优质喷气燃料产品、重整原料和蒸汽裂解制乙烯原料。生产的喷气燃料馏分烟点可达28.1 mm,可作为优质3号喷气燃料;未转化柴油馏分BMCI可达9.5,可作为优质的蒸汽裂解制乙烯原料。  相似文献   

16.
Diesel fuel was synthesized from waste cooking oil using a commercial NiMo/Al2O3 catalyst in a batch reactor under different reaction conditions. The influence of reaction conditions, such as pressure, reaction time, and catalyst-to-oil ratio, were studied during hydrotreating through a response surface methodology and a polynomial model was obtained. The feedstock was characterized to quantify its acid number and density/viscosity. The diesel fuel obtained was characterized to obtain the pour point and density/viscosity. In addition, the yield of diesel fuel was obtained by simulated distillation. The maximum yield of diesel obtained was 91 wt% at the following reaction conditions: 72 bar, 3.6 h, and 3.5 wt%/wt% of catalyst-to-oil ratio.  相似文献   

17.
In this paper, tetradecyl methacrylate-maleic anhydride-1-hexadecene (C14MC-MA-HE) terpolymers in various molar ratios was prepared and used as pour point depressants (PPDs) in 0# diesel fuel. Results showed that C14MC-MA-HE terpolymers exerted distinct depression effects on solid point (SP) and cold filter plugging point (CFPP) at 0.15?wt.%, especially in 4:1:1 and 4:4:1 ratio. To obtain better PPDs, the terpolymers were mixed with ethylene-vinyl acetate copolymer (EVA) at 1:1 mass ratio, and have proved to present better synergistic effects. PPDC-2 exhibited the best depression in both CFPP and SP by 20?°C at 0.15?wt.%. Additionally, the performance mechanism was explored.  相似文献   

18.
中海油惠州石化有限公司3.6 Mt/a加氢裂化装置柴油回炼增产喷气燃料和石脑油的工业应用结果表明,在不改变装置结构和催化剂的基础上,回炼少量柴油(4%),转化率可达到75%,喷气燃料、石脑油目标产品收率提高3.29百分点,喷气燃料烟点略有提高,柴油十六烷值提高3.9个单位,产品质量合格,装置能耗略有增加,从856.21 MJ/t增加到859.72 MJ/t。  相似文献   

19.
中国石油克拉玛依石化有限责任公司采用中国石化抚顺石油化工研究院开发的中压加氢改质-喷气燃料加氢补充精制组合工艺,以焦化柴油和催化裂化柴油为主要构成的混合柴油作原料,在缓和加氢条件下对中压加氢改质单元所生产的喷气燃料馏分进行深度加氢补充精制后,喷气燃料馏分中芳烃体积分数由14.9%降至5.8%,烟点由22mm提高至26mm,完全符合3号喷气燃料质量要求。  相似文献   

20.
Abstract

The use of full spectral region from near infrared spectroscopic analysis does not always end up with a good multivariate calibration model as many of the wavelengths do not contain necessary information. Due to the complexity of the spectra, some of the wavelengths or regions may, in fact, disturb the model-building step. Genetic algorithms are one of the useful tools for solving wavelength selection problems and may improve the predictive ability of conventional multivariate calibration methods. This study demonstrates application of genetic algorithm-based multivariate calibration to near infrared spectroscopic determination of several diesel fuel parameters. The parameters studied are cetane number, boiling and freezing point, total aromatic content, viscosity, and density. Multivariate calibration models were generated using genetic inverse least squares (GILS) method and used to predict the diesel fuel parameters based on their near infrared spectra. For each property, a different data set was used and in all cases the number of samples was around 250. Overall, percent standard error of prediction (%SEP) values ranged between 2.48 and 4.84% for boiling point, total aromatics, viscosity, and density. However, %SEP results for cetane number and freezing point were 11.00% and 14.86%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号