共查询到20条相似文献,搜索用时 62 毫秒
1.
信用卡欺诈活动日益猖獗,如何增强欺诈检测能力来规避持卡客户、商家等的经济损失是电子商务发展中至关重要的问题.给出了一个基于事中反馈的信用卡欺诈检测解决方案,其将数据挖掘技术和反馈控制技术联合运用实现实时欺诈检测及防控,以增强欺诈检测能力来减少经济损失. 相似文献
2.
基于支持向量机的信用卡欺诈检测 总被引:2,自引:0,他引:2
研究信用卡安全优化设计问题,信用卡欺诈数据具有高维数和稀疏性,由于欺诈样本数据的冗余特征,导致传统检测方法不能很好的识别信用卡欺诈行为,导致检测准确率低.为了提高信用卡欺诈检测准确率,提出一种支持向量机的信用卡欺诈检测方法.首先用采样来的信用卡消费数据训练好一个支持向量机检测系统,然后用支持向量机检测系统对一父信用卡消费行为进行检测,判断是否为欺诈交易行为.对某商业银行的信用卡消费情况进行测试实验,实验结果显示,采用支持向量机的信用卡欺诈检测精度达到95%以上,且检测时间只有0.565秒,说明提出的检测是一种有效的信用卡检测方法. 相似文献
3.
信用卡欺诈问题是当前金融行业面临的一个重大问题。针对信用卡刷卡数据不均衡的特点,本文采用基于神经网络的信用卡欺诈检测方法,根据客户的行为数据训练神经网络,开发了一个基于多层神经网络的欺诈检测模型系统。实验证明,该算法对于信用卡欺诈分类检测问题是有效可行的。 相似文献
4.
5.
基于组合分类器的信用卡欺诈识别研究 总被引:2,自引:0,他引:2
童凤茹 《计算机与信息技术》2006,(7)
随着我国信用卡发卡量和交易量的不断增长,信用卡交易中的欺诈交易也呈现出上升趋势。如何较早的识别欺诈交易,将成为金融业普遍关注的一个重要问题。本文提出了一种基于AdaBoost组合分类器的信用卡欺诈识别模型,并通过实证研究证明模型能较为准确的识别欺诈交易。 相似文献
6.
随着我国信用卡发卡量和交易量的不断增长,信用卡交易中的欺诈交易也急剧上升。如何加强对信用卡欺诈的识别和防范,已成为银行风险控制的一个焦点。本文针对信用卡交易数据中欺诈行为的少量性和异常性,提出了一种基于相似系数和的孤立点检测建模方法,建立了信用卡欺诈检测模型,将孤立点挖掘方法应用到信用卡欺诈检测中,并通过实验研究表明该模型能较为准确的识别欺诈交易,具有很好的准确性,可行性。 相似文献
7.
毛铭泽 《数字社区&智能家居》2021,(2):194-196
信用卡欺诈检测是一个重要的问题,为了提升对于真实世界的信用卡欺诈数据的识别率,提出了一种混合的信用卡欺诈检测模型AWFD(Anomaly weight of credit card fraud detection),首先通过异常检测的方法将数据划分为可信和异常数据,然后利用半监督的方法训练一个集成模型,最终再利用异常检... 相似文献
8.
9.
李占利;唐成;靳红梅 《计算机工程与设计》2024,45(3):830-836
针对信用卡交易数据的不平衡重叠问题,提出一种基于生成对抗网络的端到端一类分类方法。提出一种基于PCA和T_SNE的混合数据降维方法,对清洗后的数据进行特征降维;将降维后的数据送入所提出的基于LSTM和aMLP的生成对抗网络(aLMGAN),提出一种基于闵可夫斯基距离(Minkowski distance)的损失函数(Min-loss)代替原始生成对抗网络中的交叉熵损失函数,对正常交易数据进行单类稳定训练,形成一种特殊特征模式,区分不属于该特征的异常数据。通过使用kaggle上两个真实的公共信用卡交易数据集进行实验,验证了aLMGAN算法的有效性。 相似文献
10.
首先分析了当前电信客户欺诈背景,提出把数据挖掘技术应用于电信客户欺诈系统中的构想。防范电信欺诈从操作角度来说就是对欺诈人群的行为进行控制,利用数据挖掘等先进技术对电信客户的行为进行分析。文章着重阐述了采用数据挖掘、朴素贝叶斯分类等技术建模以及验证过程。性能测试表明:将先进的数据挖掘贝叶斯分类技术应用于实际的电信客户欺诈系统中,具有一定的市场价值。该模型能挖掘出潜在的风险行为,识别出客户的欺诈行为,从而解决诸多规模小、分散性大的电信欺诈行为。 相似文献
11.
郑帅 《网络安全技术与应用》2014,(9):90-91
信用卡诈骗作为目前金融行业蒙受损失的重灾区,银行在申请方面做各种限制,但诈骗人层出不穷的手段使人防不胜防.针对这种现象,本文采用较关系数据库查询有明显优势的NoSQL技术,设计一种可快速检测利用伪造虚假身份信息进行信用卡恶意透支诈骗的图数据库. 相似文献
12.
Some biological phenomena offer clues to solving real‐life, complex problems. Researchers have been studying techniques such as neural networks and genetic algorithms for computational intelligence and their applications to such complex problems. The problem of security management is one of the major concerns in the development of eBusiness services and networks. Recent incidents have shown that the perpetrators of cybercrimes are using increasingly sophisticated methods. Hence, it is necessary to investigate non‐traditional mechanisms, such as biological techniques, to manage the security of evolving eBusiness networks and services. Towards this end, this paper investigates the use of an Artificial Immune System (AIS). The AIS emulates the mechanism of human immune systems that save human bodies from complex natural biological attacks. The paper discusses the use of AIS on one aspect of security management, viz. the detection of credit card fraud. The solution is illustrated with a case study on the management of frauds in credit card transactions, although this technique may be used in a range of security management applications in eBusiness. 相似文献
13.
花蓓 《计算机工程与设计》2008,29(11):2989
针对分类预测建模数据的非对称性,提出一种基于神经网络和决策树技术结合的非对称性数据集合预测分类建模方法,建立了信用卡审批模型.结果表明:增加预测类标识决策属性后,在用不同比例的建模数据集建立的所有模型中,比例为33.33%:66.67%的数据集建立的神经网络模型最好,模型的准确率达到88.49%. 相似文献
14.
Traditional credit card payment is not secure against credit card frauds because an attacker can easily know a semi-secret credit card number that is repetitively used. Recently one-time transaction number has been proposed by some researchers and credit card companies to enhance the security in credit card payment. Following this idea, we present a practical security enhancement scheme for one-time credit card payment. In our scheme, a hash function is used in generation of one-time credit card numbers with a secret only known to the card holder and issuer. Compared with related work, our scheme places less burden on credit card issuers, and can be easily deployed in on-line or off-line payment scenarios. Analysis and simulation show that the time and space complexity is affordable to the card issuer with desired security features. 相似文献
15.
关联规则分析被认为是数据挖掘中最有效的研究模型,能够发现相关项目之间潜在有用的关联规则,从而为决策者提供决策支持或为政策法规的制定提供依据。零售业的竞争越来越激烈,关联规则被广泛地应用到零售行业的数据分析中,基于此,以购物卡为例,为了检测和预防购物卡欺诈,从事务购物卡数据库中抽取知识,分析购物卡欺诈的一般特性,以便得出正常的行为模式,对于零售业业务风险管理的提升有所帮助。 相似文献
16.
针对传统单个分类器在不平衡数据上分类效果有限的问题,基于对抗生成网络(GAN)和集成学习方法,提出一种新的针对二类不平衡数据集的分类方法——对抗生成网络-自适应增强-决策树(GAN-AdaBoost-DT)算法。首先,利用GAN训练得到生成模型,生成模型生成少数类样本,降低数据的不平衡性;其次,将生成的少数类样本代入自适应增强(AdaBoost)模型框架,更改权重,改进AdaBoost模型,提升以决策树(DT)为基分类器的AdaBoost模型的分类性能。使用受测者工作特征曲线下面积(AUC)作为分类评价指标,在信用卡诈骗数据集上的实验分析表明,该算法与合成少数类样本集成学习相比,准确率提高了4.5%,受测者工作特征曲线下面积提高了6.5%;对比改进的合成少数类样本集成学习,准确率提高了4.9%,AUC值提高了5.9%;对比随机欠采样集成学习,准确率提高了4.5%,受测者工作特征曲线下面积提高了5.4%。在UCI和KEEL的其他数据集上的实验结果表明,该算法在不平衡二分类问题上能提高总体的准确率,优化分类器性能。 相似文献
17.
介绍了已成功开发并推广应用的中国建设银行湖南省分行贷记卡系统的设计目标和设计原则,系统技术实现与系统运行环境,系统功能模块设计和系统特点。 相似文献
18.
The design of an efficient credit card fraud detection technique is, however, particularly challenging, due to the most striking characteristics which are; imbalancedness and non-stationary environment of the data. These issues in credit card datasets limit the machine learning algorithm to show a good performance in detecting the frauds. The research in the area of credit card fraud detection focused on detection the fraudulent transaction by analysis of normality and abnormality concepts. Balancing strategy which is designed in this paper can facilitate classification and retrieval problems in this domain. In this paper, we consider the classification problem in supervised learning scenario by creating a contrast vector for each customer based on its historical behaviors. The performance evaluation of proposed model is made possible by a real credit card data-set provided by FICO, and it is found that the proposed model has significant performance than other state-of-the-art classifiers. 相似文献
19.
20.
《Expert systems with applications》2014,41(10):4915-4928
Billions of dollars of loss are caused every year due to fraudulent credit card transactions. The design of efficient fraud detection algorithms is key for reducing these losses, and more algorithms rely on advanced machine learning techniques to assist fraud investigators. The design of fraud detection algorithms is however particularly challenging due to non-stationary distribution of the data, highly imbalanced classes distributions and continuous streams of transactions.At the same time public data are scarcely available for confidentiality issues, leaving unanswered many questions about which is the best strategy to deal with them.In this paper we provide some answers from the practitioner’s perspective by focusing on three crucial issues: unbalancedness, non-stationarity and assessment. The analysis is made possible by a real credit card dataset provided by our industrial partner. 相似文献