共查询到19条相似文献,搜索用时 78 毫秒
1.
为改善文本分类的效率和效果,降低计算复杂度,在分析了经典的特征选择方法后,提出加权的文本特征选择方法.该方法不仅利用数据集中文本的个数,还充分考虑到索引项的权重信息,并构造新的评估函数,改进了信息增益、期望交又熵以及文本证据权.利用KNN分类器在Reuters-21578标准数据集上进行训练和测试.实验结果表明,该方法能够选出有效特征,提高文本分类的性能. 相似文献
2.
《计算机科学与探索》2016,(9):1299-1309
随着文本数据量变得很大且仍在迅猛增加,自动文本分类变得越来越重要。为了提高分类准确率,作为文本特征的词的权重计算方法是文本分类领域的研究热点之一。研究发现,基于信息熵的权重计算方法(熵加权)相对于其他方法更有效,但现有方法仍然存在问题,比如在某些语料库上相比TF-IDF(term frequency&inverse document frequency),它们可能表现较差。于是将对数词频与一个新的基于熵的类别区分力度量因子相结合,提出了LTF-ECDP(logarithmic term frequency&entropy-based class distinguishing power)方法。通过在Tan Corp、Web KB和20 Newsgroups语料库上使用支持向量机(support vector machine,SVM)进行一系列文本分类实验,验证和比较了8种词权重计算方法的性能。实验结果表明,LTF-ECDP方法比其他熵加权方法和TF-IDF、TF-RF(term frequency&relevance frequency)等著名方法更优越,不仅提高了文本分类准确率,而且在不同数据集上的性能更加稳定。 相似文献
3.
基于潜在语义索引的文本特征词权重计算方法 总被引:1,自引:0,他引:1
潜在语义索引具有可计算性强,需要人参与少等优点。对其中重要的优化过程--权重计算,进行了深入分析。针对目前应用最广泛的TF-IDF方法中,采用线性处理的不合理性以及难以突出对文本内容起关键性作用的特征的缺点,提出了一种基于"Sigmiod函数"和"位置因子"的新权重方案。突出了文本中不同特征词的重要程度,更有利于潜在语义空间的构造。通过实验平台"中文潜在语义索引分析系统"的测试结果表明,该权重方法更利于基于潜在语义的检索性能的提高。 相似文献
4.
特征项权重的计算方法是文本分类的一个重要问题,计算方法的选择关系到分类的效果。使用句子的重要度对特征项权重进行计算,并与其他几种传统的权重计算方法进行了比较。该方法能够有效地提高分类的准确度。 相似文献
5.
基于文本集密度的特征词选择与权重计算方法 总被引:3,自引:0,他引:3
根据汉语语言自身的特点,在基于原有的特征项提取方法基础之上,提出了基于文本集密度的特征词选择的思想,对于特征项个数和选择进行了界定,找出了不损失文本有效信息的最小特征词语集,并且利用其中的中间值作为词语权重计算的一部分,创造出更为合理的权重计算方案。最后利用一种新的衡量权重好坏的标准——元打分法,对文中所提出的方法的正确性和有效性进行了实验和证明。 相似文献
6.
7.
提出一种基于关系权重的文本表示方法.通过优化关系权重,在文本向量中体现了不同特征项在不同类别中重要程度的差异,使得在此权重下不同类别的文本得到更准确的区分.运用SVM分类实验表明,基于关系权重的文本表示方法,较之传统的 TF-IDF 文本表示法,有更高的准确率和召回率. 相似文献
8.
9.
文本分类是NLP(natural language processing,自然语言处理)处理技术的重要分支.信息检索、文本挖掘作为自然语言处理领域的关键技术,给人们的生活带来了许多便利,而文本分类正是这些关键技术开展的重要基础.文本分类作为自然语言处理研究的一个热点,其主要原理是将文本数据按照一定的分类规则实现自动化分... 相似文献
10.
短文本固有的特征稀疏和样本高度不均衡等特点,使得传统长文本的加权方法难以直接套用。针对此问题,提出一种针对短文本的特征权重计算方法——综合类别法。该方法引入反文档频和相关性频率的概念,综合考虑了样本在正类和负类中的分布情况。实验结果表明,相对于其他特征权重方法,该方法的微平均和宏平均值均在90%以上,能增强样本在负类中的类别区分能力,改善短文本分类的查准率和查全率。 相似文献
11.
基于自适应加权的文本关联分类 总被引:1,自引:0,他引:1
在文本关联分类研究中,训练样本特征词的分布情况对分类结果影响很大.即使是同一种关联分类算法,在不同的样本集上使用,分类效果也可能明显不同.为此,本文利用加权方法改善文本关联分类器的稳定性,设计实现了基于规则加权的关联分类算法(WARC)和基于样本加权的关联分类算法(SWARC).WARC算法通过规则自适应加权调整强弱不均的分类规则;SWARC算法则自适应地调整训练样本的权重,从根本上改善不同类别样本特征词分布不均的情况.实验结果表明,无论是WARC还是SWARC算法,经过权重调整后的文本分类质量明显提高,特别是SWARC算法分类质量的提高极为显著. 相似文献
12.
13.
14.
传统tf.idf算法中的idf函数只能从宏观上评价特征区分不同文档的能力,无法反映特征在训练集各文档以及各类别中分布比例上的差异对特征权重计算结果的影响,降低文本表示的准确性。针对以上问题,提出一种改进的特征权重计算方法tf.igt.igC。该方法从考察特征分布入手,通过引入信息论中信息增益的概念,实现对上述特征分布具体维度的综合考虑,克服传统公式存在的不足。实验结果表明,与tf.idf.ig和tf.idf.igc 2种特征权重计算方法相比,tf.igt.igC在计算特征权重时更加有效。 相似文献
15.
16.
在大数据时代,文本挖掘 面临特征的“高维-稀疏”问题,海量文本词汇与稀少关键特征间的矛盾导致了高时空复杂度和低效率等问题,严重制约了文本挖掘效率,因此在文本挖掘前进行有效的数据预处理至关重要。传统文本挖掘算法在数据预处理阶段只进行分词和去停用词操作。为提高性能,提出基于词频统计规律的文本数据预处理方法。首先,基于齐普夫定律和最大值法推导同频词数表达式;然后,基于同频词数表达式探究各频次词语在文中的分布规律,结果表明词频为1和2的词语与文档的关联度较低,但比重高达 2/3;最后,基于词频统计规律进行数据预处理,在预处理阶段去除低频词,减小特征维度。在公共数据集Reuters-21578和20-Newsgroups上进行的实验的结果表明,各频次词语的分布规律是正确的,基于词频统计规律的文本数据预处理方法在分类准确率、精确率、召回率以及F1度量值方面均有提升,运行时间明显降低,文本挖掘效率得到显著提高。 相似文献
17.
Supervised text classifiers need to learn from many labeled examples to achieve a high accuracy. However, in a real context, sufficient labeled examples are not always available because human labeling is enormously time-consuming. For this reason, there has been recent interest in methods that are capable of obtaining a high accuracy when the size of the training set is small.In this paper we introduce a new single label text classification method that performs better than baseline methods when the number of labeled examples is small. Differently from most of the existing methods that usually make use of a vector of features composed of weighted words, the proposed approach uses a structured vector of features, composed of weighted pairs of words.The proposed vector of features is automatically learned, given a set of documents, using a global method for term extraction based on the Latent Dirichlet Allocation implemented as the Probabilistic Topic Model. Experiments performed using a small percentage of the original training set (about 1%) confirmed our theories. 相似文献
18.
There are two well-known characteristics about text classification.One is that the dimension of the sample space is very high,while the number of examples available usually is very small.The other is that the example vectors are sparse.Meanwhile,we find existing support vector machines active learning approaches are subject to the influence of outliers.Based on these observations,this paper presents a new hybrid active learning approach.In this approach,to select the unlabelled example(s) to query,the learner takes into account both sparseness and high-di-mension characteristics of examples as well as its uncertainty about the examples‘‘ categorization.This way, the active learner needs less labeled examples,but still can get a good generalization performance more quickly than competing methods.Our empirical results indicate that this new approach is effective. 相似文献