首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究丁香酚对解淀粉芽孢杆菌DY1a生物膜的抑制作用及成膜早期界面黏附聚集能力的影响,分析了不同质量浓度的丁香酚对生物膜形成、生物膜表面微观结构、膜内活菌数及生物膜基质多糖和蛋白质含量的影响,并评价其对成熟生物膜的清除能力,通过细菌运动能力实验、细胞表面疏水性、细胞表面Zeta电位及细胞自聚集能力,综合分析丁香酚对生物膜形成早期界面黏附聚集能力的影响。结果表明:丁香酚对解淀粉芽孢杆菌的最低生物膜抑制质量浓度(MBIC)为1.500mg/mL,MBIC的丁香酚对成熟生物膜清除率为28.85%。添加1/2 MBIC、1/4 MBIC的丁香酚培养基气液界面形成的生物膜较为单薄,表面较为光滑平整,生物膜内活菌数显著降低。丁香酚对腐败菌泳动能力抑制率为22.16%~100.00%,对丛集能力的抑制率为43.86%~97.50%,使细胞表面疏水性、细胞表面负Zeta电位和自聚集率均降低。此外,丁香酚显著抑制了腐败菌胞外多糖和蛋白质合成。丁香酚对芽孢杆菌生物膜的抑制作用主要是通过抑制细菌运动能力,降低细胞表面的疏水性、自聚集性,从而干扰早期菌体在成膜界面上的黏附能力,并通过抑制胞外聚合物组分的合成分泌延迟生物膜的形成和成熟。丁香酚可作为抑制腐败解淀粉芽孢杆菌气液界面生物膜形成的潜在抗生物膜剂。  相似文献   

2.
The objective of this study was to evaluate biofilm formation on polyamide reverse osmosis (RO) whey concentration membranes. Biofilms were observed with scanning electron and fluorescence microscopy. For scanning electron microscopy, pieces of 6-, 12-, and 14-mo-old membranes were allowed to air dry at room temperature (22°C) for 24 h followed by sputter coating with a 5-nm layer of gold and microscopic observations. Scanning electron microscopy images revealed that the hydrophilic layer, used to prevent membrane plugging, was not evenly distributed on the surface. Although this hydrophilic layer seemed to prevent the attachment of proteins, it supported biofilm formation. Three different structures of multispecies biofilm were observed on the retentate side of the membrane: 1) a mono layer, 2) a 3-dimensional structure of a dense matrix of extracellular polymeric substances where different types of bacterial cells were embedded, and 3) cell aggregates. In some of the biofilms, a smooth layer (shell) covered cell aggregates. In the 6-mo-old membranes, part of the shell layer was broken off. Biofilms as observed on the RO membrane were described as having a hill-and-valley type of structure, with hills showing a mushroom-like appearance and valleys comprising dense matrices of extracellular polymers with embedded bacterial cells. Fluorescence microscopy showed live cells on the surface of the biofilm. It is concluded that both cells in the deep layers of biofilm and surface cells may resist cleaning and sanitation. The extent of biofilm formation and the presence of live cells on RO membranes after regular clean in place cycles indicate the need for a more effective cleaning regimen customized for dairy separation systems.  相似文献   

3.
张雯  卞丹  阮成旭  时祥柱  倪莉 《食品科学》2019,40(14):84-90
以分离纯化自冰鲜大黄鱼的3 株希瓦氏菌(MA1-5、MA1-7、MA1-13)和3 株假单胞菌(R3-1、R3-2、R3-5)为供试菌株,研究鱼源腐败菌的表面疏水性、自凝聚能力、生物膜和腐败菌对鱼体(鱼肠、鱼鳃和体表)黏液的黏附能力,探明黏附特性与不同部位黏附能力的相关性,并进一步研究生物膜在不同因素下的形成特性。研究表明,希瓦氏菌具有更强的表面疏水性和自凝聚能力,对鱼体黏液的黏附性强,并具有更强的生物膜形成能力。主成分分析和聚类分析说明黏附能力在属间存在差异性,属内具有相似性。腐败菌对鱼肠和鱼鳃的黏附能力与自凝聚能力和生物膜形成能力具有较高的相关性,对体表黏附能力只与生物膜形成能力有关。腐败菌生物膜的形成受初始菌浓度、培养时间、温度、pH值、盐含量等多种环境因素影响。希瓦氏菌在初始菌浓度106 CFU/mL以上、37 ℃、pH 7~8、0.8% NaCl时形成的生物膜量最多;生物膜在12~24 h期间快速形成,并在36 h达到峰值后,随培养时间延长而逐渐下降。经鱼体黏液包被后,生物膜形成量受到显著影响,鱼鳃黏液促进生物膜形成,鱼肠黏液抑制生物膜形成。  相似文献   

4.
Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.  相似文献   

5.
Predicting the fate of microorganisms in the environment is increasingly warranted, especially for pathogenic strains. A major habitat of Escherichia coli, which encompasses commensal as well as pathogenic strains, is the gastrointestinal tract with conditions very different from the environment it encounters after shedding from the host or during cultivation in the laboratory. We developed two relevant growth conditions representative of intestinal (host-associated) and external (postshedding) environments to investigate the surficial properties and behaviors of a diverse subset of E. coli feedlot isolates. Surficial properties may determine an isolate's physical fate. A pronounced increase in cell hydrophobicity and concomitant biofilm mass formation was observed for isolates grown under external conditions. Isolates that exhibited the highest surface hydrophobicity also formed visible suspended aggregates under external conditions. Other than hydrophobicity, flagella-mediated motility was determinant in affecting E. coli biofilm formation under external conditions, with all four nonmotile E. coli isolates characterized as thin-biofilm formers. The majority (88%) of Ag43+ (outer membrane protein, antigen 43) isolates formed thick biofilms, whereas the majority (75%) of Ag43- isolates formed thin biofilms. The tested E. coli O157:H7 strain behaved differently from the environmental E. coli isolates: it displayed a low electrostatic charge, a small decrease in hydrophobicity upon shifts to external conditions, and very little biofilm formation. On the other hand, the commonly used laboratory strain E. coli K-12 displayed low hydrophobicity both intestinally and externally, but it formed significant biofilm mass under external conditions. Clearly, various E. coli strains manifest significant variability in surficial behavior. This variability is further modulated by growth conditions. The interacting strain-inherent and cultivation-dependent effects on surficial behavior may have broad consequences for the fate and ecology of pathogenic and commensal E. coli strains.  相似文献   

6.
《Journal of dairy science》2022,105(12):9417-9425
This study evaluates the effectiveness of a typical clean-in-place (CIP) protocol against in vitro biofilms on whey reverse osmosis (RO) membranes developed under static condition. Bacterial isolates obtained from RO membrane biofilms were used to develop single and multispecies biofilms under laboratory conditions. A typical commercial CIP protocol was tested against the 24-h-old biofilms, and included 6 sequential treatment steps based on alkali, surfactant, acid, enzyme, a second surfactant, and a sanitizer treatment step. Experiments were conducted in 4 replicates and the data were statistically analyzed. The results revealed a variation in the resistance of mixed-species biofilms against the individual steps in the sequential CIP protocol. The overall 6 steps protocol, although resulted in a greater reduction, also resulted in the detection of survivors even after the final sanitizer step, reflect the ineffectiveness of the CIP protocol for complete removal of biofilms. Posttreatment counts of 0.71 log after the sequential CIP of mixed-species biofilm revealed the resistance of biofilm constitutive microbiota. Mixed-species biofilms, constituting different genera including Bacillus, Staphylococcus, and Streptococcus, were observed to be more resistant than most of the single-species biofilms. However, among the single-species biofilms, significantly different resistance pattern was observed for Bacillus isolates compared with the other bacterial isolates. All 5 isolates of Bacillus were found resistant with survivor counts of more than 1.0 log against the sequential CIP protocol tested. Thus, it can be concluded that the tested CIP protocol had a limited effectiveness to clean membrane biofilms formed on the whey RO membranes.  相似文献   

7.
The biofilm community structure of a biofouled reverse osmosis (RO) membrane was examined using a polyphasic approach, and the dominant phylotypes retrieved were related to the order Rhizobiales, a group of bacteria that is hitherto not implicated in membrane biofouling. A comparison with two other membrane biofilms using T-RFLP fingerprinting also revealed the dominance of Rhizobiales organisms. When pure culture RO biofilm isolates were cultivated aerobically in BIOLOG microplates, most Rhizobiales were metabolically versatile in their choice of carbon substrates. Nitrate reduction was observed in five RO isolates related to Castellaniella, Ochrobactrum, Stenotrophomonas, and Xanthobacter. Many of the key Rhizobiales genera including Bosea, Ochrobactrum, Shinella, and Rhodopseudomonas were detected by PCR to contain the nirK gene responsible for nitrite reductase activity. These findings suggest that Rhizobiales organisms are ecologically significant in membrane biofilm communities under both aerobic and anoxic conditions and may be responsible for biofouling in membrane separation systems.  相似文献   

8.
The dairy industry is increasingly using reverse osmosis (RO) membranes for concentration of various fluid feed materials such as whey and ultrafiltration (UF) permeate. This study compared the effect of UF permeate and whey on membrane biofilm formation. A Bacillus sp., previously isolated in our laboratory from a cleaning-resistant membrane biofilm, was used to develop 48-h-old static biofilms on RO membrane pieces, using the different feed substrates (UF permeate, whey, and an alternating whey/UF feed). Biofilms were analyzed for viable counts by the swab technique, and we used scanning electron and atomic force microscopy for microstructure imaging. The membrane cleaning process included 6 sequential steps. We observed differences in the resistance pattern of the 3 types of biofilms to the typical cleaning process. The mean pretreatment counts of the 48-h UF permeate biofilms were 5.39 log cfu/cm2, much higher than the whey biofilm counts of 3.44 log, and alternating whey/UF biofilm counts of 4.54 log. After a 6-step cleaning cycle, we found 2.54 log survivors of the Bacillus isolate on UF biofilms, whereas only 1.82 log survivors were found in whey biofilm, and 2.14 log survivors on whey/UF permeate biofilms. In conclusion, the UF permeate biofilms was more resistant to the biofilm cleaning process compared with the whey or whey/UF permeate biofilms. Scanning electron micrographs showed different microstructures of biofilms based on the type of feed. For UF permeate and whey/UF permeate biofilms, bacilli were present in multilayers of cells in aggregates or irregular clusters with foulant layers. In contrast, those in whey biofilms were in monolayers, with a smoother, flatter appearance. Atomic force microscopy analysis indicated that UF permeate biofilms had the greatest surface roughness among the biofilms, reflecting intensified bacterial colonization. The biofilm micro- and nanostructure variations for the 2 feed substrates and their combination may have resulted in differences in their resistance to the cleaning process.  相似文献   

9.
研究膜技术分离纯化绿原酸提取液的过程。以金银花为原料,以平均通量、膜截留率、绿原酸透过率为指标,比较3 种微滤膜MF1、MF2 和MF3,4 种超滤膜UF1、UF2、UF3 和UF4,及两种反渗透膜RO1 和RO2 对绿原酸提取液的过滤特性,并研究浓缩液的洗滤对绿原酸截留率的影响。结果表明:MF1、UF1 和RO2膜的过滤性能明显优于其他同类型膜,使用MF1-UF1-RO2 膜组合处理效果最佳,其绿原酸回收率可达67.75%,产品纯度可达13.21% 以上;同时,洗滤可进一步提高处理效果,经间歇洗滤后,MF1 膜的绿原酸截留率可由9.54% 降低到1.17%,UF2 膜的绿原酸截留率可由32.36% 降低到20.11%。  相似文献   

10.
Membrane fouling is a major operational problem that leads to reduced membrane performance and premature replacement of membranes. Bacterial biofilms developed on reverse osmosis membranes can cause severe flux declines during whey processing. Various types of biological, physical, and chemical factors regulate the formation of biofilms. Extracellular polymeric substances produced by constitutive microflora provide an effective barrier for the embedded cells. Cultural and microscopic techniques also revealed the presence of biofilms with attached bacterial cells on membrane surfaces. Presence of biofilms, despite regular cleaning processes, reflects ineffectiveness of cleaning agents. Cleaning efficiency depends upon factors such as pH of the cleaning agent, temperature, pressure, cleaning agent dose, optimum cleaning time, and cross‐flow velocity during cleaning. Among different cleaning agents, surfactants help to prevent bacterial attachment to surfaces by reducing the surface tension of water and interfacial tension between the layers. Enzymes mixed with surfactants and chelating agents can be used to penetrate the biofilm matrix formed by microbes. Recent studies have shown the role of quorum‐sensing‐based cell‐to‐cell signaling, which provides communication within bacterial cells to form a mature biofilm, and also the role of applying quorum inhibitors to prevent biofilm formation. Major cleaning applications are also summarized in Table 1 .  相似文献   

11.
Biofilm formation on food industry surfaces has important health and economic consequences, since they can serve as a potential source of contamination for food products, which may lead to food spoilage or transmission of diseases. Salmonella sp. is one of the most important foodborne pathogens and several studies have led to the discovery that these bacteria are capable of adhering and forming biofilms on different surfaces. The attachment of bacterial cells is affected by several factors, including the medium in which they are grown, motility, growth phase of the cells, type and properties of the inert material, presence of organic material, temperature, pH, contact time, and so on. This investigation focused on the study and quantification of the effects of temperature (20 to 40 °C), pH (4.5 to 7.5), and medium composition (0.5 to 2.5 g/L of peptone) on biofilm formation by Salmonella sp. on stainless steel through surface response modeling. Results highlighted that the target strain was able to adhere on stainless steel, under all the conditions tested. To assess potential differences, the aptitude to biofilm formation (ABF), defined as the time necessary to start adhesion on the surface, was calculated by using the Gompertz equation. This parameter was modeled through a stepwise regression procedure and experimental conditions resulting in the greater ABF were growth in poor media (1.0 to 1.5 g/L of peptone), incubation temperature of about 30 °C, pH close to 6.0. Practical Application: The importance of this work lies in its extension of our knowledge about the effect of different environmental conditions on Salmonella adherence to stainless steel food-processing equipment, as a better understanding of biofilms may provide valuable pathways for the prevention of biofilm formation.  相似文献   

12.
为了研究粪肠球菌Z096对副溶血弧菌生物被膜和群体感应(quorum sensing,QS)系统的抑制作用,采用竞争、清除、排阻三种方式模拟Z096与副溶血弧菌在微菌落环境中的相互作用,并进一步探究了Z096的提取物(Z096-E)对副溶血弧菌生物被膜形成、成熟生物被膜清除、细胞表面疏水性、自聚性、QS信号分子AI-2活性、群集泳动能力以及胞外多糖和蛋白合成的影响。结果表明:Z096可通过竞争、清除、排阻的方式与副溶血弧菌相互作用,降低浮游和生物被膜状态的副溶血弧菌细胞数量,干扰副溶血弧菌在载体表面的粘附,且Z096-E能够显著抑制副溶血弧菌生物被膜形成,有效清除成熟生物被膜,1.6 mg/mL的Z096-E处理12 h,副溶血弧菌生物被膜抑制率为70.43%,代谢活性减少率为84.15%;12.8 mg/mL的Z096-E处理副溶血弧菌成熟生物被膜4 h,生物被膜清除率为58.21%,代谢活性减少率为69.84%。而且1.6 mg/mL的Z096-E对副溶血弧菌群集和泳动能力、细胞表面疏水性和自聚性、胞外多糖和蛋白合成的抑制率分别为47.26%、53.56%、63.37%、89.38%、77.65%和51.91%,抑制效果具有浓度依赖性。此外,Z096-E可使副溶血弧菌QS信号分子AI-2活性减弱,表明Z096-E是一种AI-2类群体感应抑制剂,其可通过干扰QS系统,从而影响副溶血弧菌的生理特性。因此,本研究发现了一株能够抑制副溶血弧菌生物被膜的乳酸菌,其提取物Z096-E能作为一种防控副溶血弧菌生物被膜的新型乳酸菌生物制剂,这对消除致病菌生物被膜污染以及开发新型抗菌剂具有积极的作用。  相似文献   

13.
本文研究了百里香酚在亚抑菌浓度条件下对阴沟肠杆菌(Enterobacter cloacae) C4生物膜形成的抑制作用。首先确定百里香酚对E.cloacae C4的最小抑菌浓度,然后测定亚抑菌浓度的百里香酚对生物膜内菌落总数、菌体泳动能力和胞外多糖含量的影响,观察生物膜内的细菌形态以及三维结构的变化,并进一步测定与生物膜形成相关基因的相对表达量。结果表明:百里香酚对该菌的最小抑菌浓度(MIC)为256 μg/mL。1/4 MIC百里香酚在不影响浮游细菌生长和生物膜内活菌总数的情况下,显著(P<0.05)抑制菌体的泳动能力和生物膜内胞外多糖的合成,与生物膜形成相关(细胞粘附和胞外多糖合成)基因相对表达量显著下调。百里香酚处理后生物膜内细菌菌体变长、生物膜厚度降低,膜结构松散。因此百里香酚在亚抑菌浓度下对阴沟肠杆菌C4生物膜形成有抑制作用。  相似文献   

14.
Organic fouling of reverse osmosis (RO) membranes and its relation to foulant--foulant intermolecular adhesion forces has been investigated. Alginate and Suwannee River natural organic matter were used as model organic foulants. Atomic force microscopy was utilized to determine the adhesion force between bulk organic foulants and foulants deposited on the membrane surface under various solution chemistries. The measured adhesion force was related to the RO fouling rate determined from fouling experiments under solution chemistries similar to those used in the AFM measurements. A remarkable correlation was obtained between the measured adhesion force and the fouling rate under the solution chemistries investigated. Fouling was more severe at solution chemistries that resulted in larger adhesion forces, namely, lower pH, higher ionic strength, presence of calcium ions (but not magnesium ions), and higher mass ratio of alginate to Suwannee River natural organic matter. The significant adhesion force measured with alginate in the presence of calcium ions indicated the formation of a crossed-linked alginate gel layer during fouling through intermolecular bridging among alginate molecules.  相似文献   

15.
Bacteria and other microorganisms have a natural tendency to adhere to surfaces as a survival mechanism. This can occur in many environments, including the living host, industrial systems, and natural waters. The general outcome of bacterial colonization of a surface is biofilm formation, which consists of microorganisms immobilized in a variety of polymeric compounds generally referred to as extracellular polymeric substances. Bacterial adhesion to a solid surface is a crucial step in the biofilm process. This step is dependent upon van der Waals, electrostatic, and acid–base interactions. These interactions are influenced by physicochemical properties of the substratum and the bacterial surface, such as hydrophobicity, surface charge, and electron donor–electron acceptor properties. In addition, the roughness of the substratum and the microbiological characteristics of the cell surface, such as cellular appendages and production of exopolysaccharides, can affect the adherence process. To date, many strategies have been developed to decrease the adherence of bacteria to surfaces. Surface modification with the addition of the suitable compounds makes surfaces less attractive for microorganisms and therefore prevents bacterial adherence and biofilm formation.  相似文献   

16.
单核细胞增生性李斯特菌是常见的食源性致病菌,其细胞壁上存在的表面蛋白与其致病性和细菌菌膜的形成密切相关,而srt A基因是介导表面蛋白膜表面定位的关键因子,通过识别特定的蛋白序列将表面蛋白共价结合在细胞壁上,也是单增李斯特菌的重要毒力基因。为深入研究srtA的功能及其对细菌毒力的调控,本研究通过同源重组技术敲除了单增李斯特菌中的srt A基因,并对基因敲除菌株的生物学特性进行了初步研究。通过生长曲线的测定,发现srtA基因敲除株的生长活性低于野生型菌株。进一步利用该菌株对星形胶质细胞系U251的侵袭实验发现,srtA基因敲除菌株的侵袭效率低于野生菌株,提示srtA基因在调控单增李斯特菌的侵袭能力方面发挥重要作用。本研究可为单增李斯特菌毒力基因调控和细菌菌膜的研究提供理论依据。  相似文献   

17.
Biofilms formations of spoilage and pathogenic bacteria on food or food contact surfaces have attracted increasing attention. These events may lead to a higher risk of food spoilage and foodborne disease transmission. While Pseudomonas lundensis is one of the most important bacteria that cause spoilage in chilled meat, its capability for biofilm formation has been seldom reported. Here, we investigated biofilm formation characteristics of P. lundensis mainly by using crystal violet staining, and confocal laser scanning microscopy (CLSM). The swarming and swimming motility, biofilm formation in different temperatures (30, 10, and 4 °C) and the protease activity of the target strain were also assessed. The results showed that P. lundensis showed a typical surface‐associated motility and was quite capable of forming biofilms in different temperatures (30, 10, and 4 °C). The strain began to adhere to the contact surfaces and form biofilms early in the 4 to 6 h. The biofilms began to be formed in massive amounts after 12 h at 30 °C, and the extracellular polysaccharides increased as the biofilm structure developed. Compared with at 30 °C, more biofilms were formed at 4 and 10 °C even by a low bacterial density. The protease activity in the biofilm was significantly correlated with the biofilm formation. Moreover, the protease activity in biofilm was significantly higher than that of the corresponding planktonic cultures after cultured 12 h at 30 °C.  相似文献   

18.
The ability of 12 Staphylococcus xylosus strains to form biofilm was determined through the study of different criteria. Eleven out of the 12 strains were able to form biofilm, 10 preferentially on hydrophilic support (glass) and one, S. xylosus C2a, on both hydrophilic and hydrophobic (polystyrene) supports. The determination of bacterial surface properties showed that all strains were negatively charged with five strains moderately hydrophobic and seven hydrophilic. The bap and icaA genes, important for biofilm formation of some staphylococci, were searched. All strains were bap positive but icaA negative. Furthermore, S. xylosus strain C2a was studied on two supports widely used in the food industry, polytetrafluoroethylene (PTFE, hydrophobic) and stainless steel (hydrophilic) and appeared to adhere preferentially on stainless steel. Addition of 20 g/l of NaCl to Tryptic Soy Broth medium (TSB) did not improve significantly its adhesion but enhanced both bacterial growth and cell survival, which were optimum in this medium. Environmental scanning electron microscopy showed that S. xylosus C2a colonized the surface of stainless steel chips with intercellular spaces. The strain formed cell aggregates embedded in an amorphous polysaccharidic matrix. Indeed, synthesis of polysaccharides increased during growth on stainless steel chips in TSB.  相似文献   

19.
探究植物源活性物质原儿茶醛对阪崎克罗诺肠杆菌泳动运动能力、生物被膜形成能力、黏附和侵入Caco-2细胞能力及9 种与菌体相关毒力基因转录的影响。结果表明,原儿茶醛对6 株阪崎克罗诺肠杆菌实验菌株的最小抑菌质量浓度(minimal inhibitory concentrations,MIC)和最小杀菌质量浓度均为2 mg/mL,对阪崎肠杆菌ATCC29544亚抑制浓度分别为1/200、1/100 MIC和1/50 MIC。亚抑制浓度的原儿茶醛能够抑制阪崎克罗诺肠杆菌在琼脂软平板中泳动运动能力;减弱菌体在12 ℃和25 ℃下不同时间段(24、48、72 h)生物被膜的形成能力;降低细菌黏附及侵入Caco-2细胞能力;下调9 种与菌体相关毒力基因的转录量。研究结果表明原儿茶醛能够抑制阪崎克罗诺肠杆菌多种毒力因子,其有潜力作为抗生素补充剂或抗毒性物质预防及控制阪崎克罗诺肠杆菌引起的相关感染。  相似文献   

20.
Perfluorooctane sulfonate (PFOS) and related substances are persistent, bioaccumulative, and toxic, and thus of substantial environmental concern. PFOS is an essential photolithographic chemical in the semiconductor industry with no substitutes yet identified. The industry seeks effective treatment technologies. The feasibility of using reverse osmosis (RO) membranes for treating semiconductor wastewater containing PFOS has been investigated. Commercial RO membranes were characterized in terms of permeability, salt rejection, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and membrane surface zeta potential (streaming potential measurements). Filtration tests were performed to determine the membrane flux and PFOS rejection. Over a wide range of feed concentrations (0.5 - 1500 ppm), the RO membranes generally rejected 99% or more of the PFOS. Rejection was better for tighter membranes, but was not affected by membrane zeta potential. Flux decreased with increasing PFOS concentration. While the flux reduction was severe for a loose RO membrane probably due to its higher initial flux, very stable flux was maintained for tighter membranes. At a very high feed concentration (about 500 ppm), all the membranes exhibited an identical stable flux. Isopropyl alcohol, present in some semiconductor wastewaters, had a detrimental effect on membrane flux. Where present it needs to be removed from the wastewater prior to using RO membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号