首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates the properties of electrolyzed oxidizing (EO) water for the inactivation of pathogen and to evaluate the chemically modified solutions possessing properties similar to EO water in killing Escherichia coli O157:H7. A five-strain cocktail (10(10) CFU/ml) of E. coli O157:H7 was subjected to deionized water (control), EO water with 10 mg/liter residual chlorine (J.A.W-EO water), EO water with 56 mg/liter residual chlorine (ROX-EO water), and chemically modified solutions. Inactivation (8.88 log10 CFU/ml reduction) of E. coli O157:H7 occurred within 30 s after application of EO water and chemically modified solutions containing chlorine and 1% bromine. Iron was added to EO or chemically modified solutions to reduce oxidation-reduction potential (ORP) readings and neutralizing buffer was added to neutralize chlorine. J.A.W-EO water with 100 mg/liter iron, acetic acid solution, and chemically modified solutions containing neutralizing buffer or 100 mg/liter iron were ineffective in reducing the bacteria population. ROX-EO water with 100 mg/liter iron was the only solution still effective in inactivation of E. coli O157:H7 and having high ORP readings regardless of residual chlorine. These results suggest that it is possible to simulate EO water by chemically modifying deionized water and ORP of the solution may be the primary factor affecting microbial inactivation.  相似文献   

2.
This study was undertaken to evaluate the efficacy of electrolyzed oxidizing (EO) and chemically modified water with properties similar to the EO water for inactivation of different types of foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes and Bacillus cereus). A five-strain cocktail of each microorganism was exposed to deionized water (control), EO water and chemically modified water. To evaluate the effect of individual properties (pH, oxidation-reduction potential (ORP) and residual chlorine) of treatment solutions on microbial inactivation, iron was added to reduce ORP readings and neutralizing buffer was added to neutralize chlorine. Inactivation of E. coli O157:H7 occurred within 30 s after application of JAW EO water with 10 mg/l residual chlorine and chemically modified solutions containing 13 mg/l residual chlorine. Inactivation of Gram-positive and -negative microorganisms occurred within 10 s after application of ROX EO water with 56 mg/l residual chlorine and chemically modified solutions containing 60 mg/l residual chlorine. B. cereus was more resistant to the treatments than E. coli O157:H7 and L. monocytogenes and only 3 log10 reductions were achieved after 10 s of ROX EO water treatment. B. cereus spores were the most resistant pathogen. However, more than 3 log10 reductions were achieved with 120-s EO water treatment.  相似文献   

3.
The effects of chlorine and pH on the bactericidal activity of electrolyzed (EO) water were examined against Escherichia coli O157:H7 and Listeria monocytogenes. The residual chlorine concentration of EO water ranged from 0.1 to 5.0 mg/l, and the pH effect was examined at pH 3.0, 5.0, and 7.0. The bactericidal activity of EO water increased with residual chlorine concentration for both pathogens, and complete inactivation was achieved at residual chlorine levels equal to or higher than 1.0 mg/l. The results showed that both pathogens are very sensitive to chlorine, and residual chlorine level of EO water should be maintained at 1.0 mg/l or higher for practical applications. For each residual chlorine level, bactericidal activity of EO water increased with decreasing pH for both pathogens. However, with sufficient residual chlorine (greater than 2 mg/l), EO water can be applied in a pH range between 2.6 (original pH of EO water) and 7.0 while still achieving complete inactivation of E. coli O157:H7 and L. monocytogenes.  相似文献   

4.
ABSTRACT: The efficacy of electrolyzed oxidizing (EO) and acidified chlorinated water (45 ppm residual chlorine) was evaluated in killing Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. After surface inoculation, each leaf was immersed in 1.5 L of EO or acidified chlorinated water for 1 or 3 min at 22 °C. Compared to a water wash only, the EO water washes significantly decreased mean populations of E. coli O157:H7 and L. monocytogenes by 2.41 and 2.65 log10 CFU per lettuce leaf for 3 min treatments, respectively (p < 0.05). However, the difference between the bactericidal activity of EO and acidified chlorinated waters was not significant (p > 0.05). Change in the quality of lettuce subjected to the different wash treatments was not significant at the end of 2 wk of storage.  相似文献   

5.
Alfalfa sprouts have been implicated in several salmonellosis outbreaks in recent years. The disinfectant effects of acidic electrolyzed oxidizing (EO) water against Salmonella enterica both in an aqueous system and on artificially contaminated alfalfa seeds were determined. The optimum ratio of seeds to EO water was determined in order to maximize the antimicrobial effect of EO water. Seeds were combined with EO water at ratios (wt/vol) of 1:4, 1:10, 1:20, 1:40, and 1:100, and the characteristics of EO water (pH, oxidation reduction potential [ORP], and free chlorine concentration) were determined. When the ratio of seeds to EO water was increased from 1:4 to 1:100, the pH decreased from 3.82 to 2.63, while the ORP increased from +455 to +1,073 mV. EO water (with a pH of 2.54 to 2.38 and an ORP of +1,083 to +1,092 mV) exhibited strong potential for the inactivation of S. enterica in an aqueous system (producing a reduction of at least 6.6 log CFU/ml). Treatment of artificially contaminated alfalfa seeds with EO water at a seed-to-EO water ratio of 1:100 for 15 and 60 min significantly reduced Salmonella populations by 2.04 and 1.96 log CFU/g, respectively (P < 0.05), while a Butterfield's buffer wash decreased Salmonella populations by 0.18 and 0.23 log CFU/g, respectively. After treatment, EO water was Salmonella negative by enrichment with or without neutralization. Germination of seeds was not significantly affected (P > 0.05) by treatment for up to 60 min in electrolyzed water. The uptake of liquid into the seeds was influenced by the internal gas composition (air, N2, or O2) of seeds before the liquid was added.  相似文献   

6.
ABSTRACT:  Antibacterial activity of electrolyzed oxidizing (EO) water prepared from 0.05% or 0.10% (w/v) sodium chloride (NaCl) solutions against indigenous bacteria associated with fresh strawberries ( Fragaria × ananassa ) was evaluated. The efficacy of EO water and sodium hypochlorite (NaOCl) solution in eliminating and controlling the growth of Listeria monocytogenes and Escherichia coli O157:H7 inoculated onto strawberries stored at 4 ± 1 °C up to 15 d was investigated at exposure time of 1, 5, or 10 min. Posttreatment neutralization of fruit surfaces was also determined. More than 2 log10 CFU/g reductions of aerobic mesophiles were obtained in fruits washed for 10 or 15 min in EO water prepared from 0.10% (w/v) NaCl solution. Bactericidal activity of the disinfectants against L. monocytogenes and E. coli O157:H7 was not affected by posttreatment neutralization, and increasing exposure time did not significantly increase the antibacterial efficacy against both pathogens. While washing fruit surfaces with distilled water resulted in 1.90 and 1.27 log10 CFU/mL of rinse fluid reduction of L. monocytogenes and E. coli O157:H7, respectively, ≥ 2.60 log10 CFU/mL of rinse fluid reduction of L. monocytogenes and up to 2.35 and 3.12 log10 CFU/mL of rinse fluid reduction of E. coli O157:H7 were observed on fruit surfaces washed with EO water and NaOCl solution, respectively. Listeria monocytogenes and E. coli O157:H7 populations decreased over storage regardless of prior treatment. However, EO water and aqueous NaOCl did not show higher antimicrobial potential than water treatment during refrigeration storage.  相似文献   

7.
Electrolyzed oxidizing water is a relatively new concept that has been utilized in agriculture, livestock management, medical sterilization, and food sanitation. Electrolyzed oxidizing (EO) water generated by passing sodium chloride solution through an EO water generator was used to treat alfalfa seeds and sprouts inoculated with a five-strain cocktail of nalidixic acid resistant Escherichia coli O157:H7. EO water had a pH of 2.6, an oxidation-reduction potential of 1150 mV and about 50 ppm free chlorine. The percentage reduction in bacterial load was determined for reaction times of 2, 4, 8, 16, 32, and 64 min. Mechanical agitation was done while treating the seeds at different time intervals to increase the effectiveness of the treatment. Since E. coli O157:H7 was released due to soaking during treatment, the initial counts on seeds and sprouts were determined by soaking the contaminated seeds/sprouts in 0.1% peptone water for a period equivalent to treatment time. The samples were then pummeled in 0.1% peptone water and spread plated on tryptic soy agar with 5 microg/ml of nalidixic acid (TSAN). Results showed that there were reductions between 38.2% and 97.1% (0.22-1.56 log(10) CFU/g) in the bacterial load of treated seeds. The reductions for sprouts were between 91.1% and 99.8% (1.05-2.72 log(10) CFU/g). An increase in treatment time increased the percentage reduction of E. coli O157:H7. However, germination of the treated seeds reduced from 92% to 49% as amperage to make EO water and soaking time increased. EO water did not cause any visible damage to the sprouts.  相似文献   

8.
为研究臭氧水联合副干酪乳杆菌Z21发酵上清液对绿豆芽中大肠杆菌O157:H7的杀菌效果、细胞结构影响和生物膜清除作用,本实验对人工污染大肠杆菌O157:H7的绿豆芽进行联合处理,选出最优的杀菌条件,采用流式细胞仪、扫描电镜、傅里叶红外光谱(Fourier-transform infrared spectroscopy,FT-IR)、拉曼光谱分析臭氧水联合Z21发酵上清液的杀菌机制;通过菌落计数及胞外聚合物分析,研究了臭氧水联合Z21发酵上清液对大肠杆菌O157:H7生物膜的清除效果。结果表明,1.5 mg/L臭氧水联合10%(v/v)Z21发酵上清液处理对大肠杆菌O157:H7杀菌效果最佳,菌落总数减少了2.81 lg CFU/g;与对照组相比,联合处理破坏了大肠杆菌O157:H7细胞壁和细胞膜中的多糖,脂质和蛋白质结构,增加了细胞膜的通透性,改变了菌体形态。联合处理对生物膜有良好的清除效果,显著降低了生物膜的胞外聚合物含量(P<0.05)。本研究为大肠杆菌生物膜的清除及农产品防腐保鲜提供了理论依据。  相似文献   

9.
The use of different available chlorine concentrations (ACCs) of slightly acidic electrolyzed water (SAEW; 0.5 to 30 mg/liter), different treatment times, and different temperatures for inactivating Escherichia coli O157:H7 and Staphylococcus aureus was evaluated. The morphology of both pathogens also was analyzed with transmission electron microscopy. A 3-min treatment with SAEW (pH 6.0 to 6.5) at ACCs of 2 mg/liter for E. coli O157:H7 and 8 mg/liter for S. aureus resulted in 100% inactivation of two cultures (7.92- to 8.75-log reduction) at 25°C. The bactericidal activity of SAEW was independent of the treatment time and temperature at a higher ACC (P > 0.05). E. coli O157:H7 was much more sensitive than S. aureus to SAEW. The morphological damage to E. coli O157:H7 cells by SAEW was significantly greater than that to S. aureus cells. At an ACC as high as 30 mg/liter, E. coli O157:H7 cells were damaged, but S. aureus cells retained their structure and no cell wall damage or shrinkage was observed. SAEW with a near neutral pH may be a promising disinfectant for inactivation of foodborne pathogens.  相似文献   

10.
Increased interest in blueberries due to their nutritional and health benefits has led to an increase in consumption. However, blueberries are consumed mostly raw or minimally processed and are susceptible to microbial contamination like other type of fresh produce. This study was, therefore, undertaken to evaluate the efficacy of electrostatic spray of electrolyzed oxidizing (EO) water, UV light, ozone, and a combination of ozone and UV light in killing Escherichia coli O157:H7 on blueberries. A 5-strain mixture of E. coli O157:H7 were inoculated on the calyx and skin of blueberries and then subjected to the treatments. Electrostatic EO water spray reduced initial populations of E. coli O157:H7 by only 0.13 to 0.24 log CFU/g and 0.88 to 1.10 log CFU/g on calyx and skin of blueberries, respectively. Ozone treatment with 4000 mg/L reduced E. coli O157:H7 by only 0.66 and 0.72 log CFU/g on calyx and skin of blueberries, respectively. UV light at 20 mW/cm2 for 10 min was the most promising single technology and achieved 2.14 and greater than 4.05 log reductions of E. coli O157:H7 on the calyx and skin of blueberries, respectively. The combination treatment of 1 min ozone and followed by a 2 min UV achieved more than 1 and 2 log additional reductions on blueberry calyx than UV or ozone alone, respectively. PRACTICAL APPLICATION: Outbreaks of foodborne illnesses have been associated with consumption of fresh produce. Many methods for removing pathogens as well as minimizing their effect on quality of treated produce have been investigated. UV technology and its combination with ozone used in this study to inactive E. coli O157:H7 on blueberries was found effective. Results from this study may help producers and processors in developing hurdle technologies for the delivery of safer blueberries to consumers.  相似文献   

11.
The combined effects of acetic acid and mustard flour were investigated to ascertain their impact on Escherichia coli O157:H7 stored at 5 and 22 degrees C. Samples were prepared with various concentrations of acetic acid (0, 0.25, 0.5, 0.75, and 1% [vol/vol]) combined with 10% (wt/vol) Baltimore or Coleman mustard flour and 2% (fixed; wt/vol) sodium chloride. An acid-adapted mixture of three E. coli O157:H7 strains (10(6) to 10(7) CFU/ml) was inoculated into prepared mustard samples that were stored at 5 and 22 degrees C, and samples were assayed periodically for the survival of E. coli O157:H7. The numbers of E. coli O157:H7 were reduced much more rapidly at 22 degrees C than at 5 degrees C. E. coli O157:H7 was rapidly reduced to below the detection limit (<0.3 log10, CFU/ml) after 1 day at 22 degrees C, whereas it survived for up to 5 days at 5 degrees C. There was no synergistic or additive effect with regard to the killing of E. coli O157:H7 with the addition of small amounts of acetic acid to the mustard flour. When stored at 5 degrees C, mustard in combination with 0.25 (M-0.25), 0.5 (M-0.5), and 0.75% (M-0.75) acetic acid exerted less antimicrobial activity than the control (M-0). The order of lethality at 5 degrees C was generally M-0.25 = M-0.5 < M-0.75 = M-0 < M-1. The addition of small amounts of acetic acid (<0.75%) to mustard retards the reduction of E coli O157:H7. Statistical reduction in populations of E. coli O157:H7 (P < 0.05) was enhanced relative to that of the control (mustard alone) only with the addition of 1% acetic acid. This information may help mustard manufacturers to understand the antimicrobial activity associated with use of mustard flour in combination with acetic acid.  相似文献   

12.
Escherichia coli O157:H7 is an important foodborne pathogen. Cattle serve as one of the major reservoirs of E. coli O157:H7, excreting the pathogen in feces. Environmental persistence of E. coli O157:H7 is critical in its epidemiology on farms, and the pathogen has been isolated from cattle water troughs. Thus, there is a need for an effective method for killing E. coli O157:H7 in cattle drinking water. In this study, the efficacy of sodium caprylate for killing E. coli O157:H7 in cattle drinking water was investigated. A four-strain mixture of E. coli O157:H7 was inoculated (6.0 log CFU/ml) into 100-ml samples of well water containing 0, 75, 100, or 120 mM sodium caprylate. Water samples containing 1% (wt/vol) bovine feces or feed also were included. The samples were incubated at 21 or 8 degrees C for 21 days. Water samples were analyzed for viable E. coli O157:H7 on days 0, 1, 3, 5, and 7 and weekly thereafter. Triplicate samples of each treatment and control were included, and the study was repeated twice. The magnitude of E. coli O157:H7 inactivation in water significantly increased (P < 0.01) with increases in caprylate concentration and storage temperature. At 120 mM, sodium caprylate completely inactivated E. coli O157:H7 in all the samples after 1 to 20 days, depending on the treatments. The presence of feces or feed also had a significant effect (P < 0.01) on the antibacterial property of caprylate; the presence of feces decreased the antibacterial effect, whereas addition of feed enhanced the effect. These results indicate that sodium caprylate is effective in killing E. coli O157:H7 in cattle drinking water, but detailed cattle palatability studies of water containing caprylate are necessary.  相似文献   

13.
Lactobacillus reuteri strain 12002 was used for reuterin production in the two-step fermentation process. A batch culture fermentation was used to produce a maximum biomass of L. reuteri. Then cells were harvested, resuspended in a glycerol-water solution, and anaerobically incubated to produce reuterin. The lyophilized supernatants (approximately 4000 activity units (AU) of reuterin per ml) were diluted in distilled water for decontamination and preservation trials. The MIC values of reuterin for Escherichia coli O157:H7 and Listeria monocytogenes were 4 and 8 AU/ml, respectively. In meat decontamination experiments, the surface of cooked pork was inoculated with either L. monocytogenes or E. coli O157:H7 at a level of approximately log10 5 CFU/cm2, incubated for 30 min at 7 degrees C, and decontaminated by exposure to reuterin (500 AU/ml). The bactericidal effect of reuterin was analyzed 15 s and 24 h after exposure at 7 degrees C. After 15 s of exposure to reuterin, viable numbers decreased by 0.45 and 0.3 log10 CFU/cm2 for E. coli O157:H7 and L. monocytogenes, respectively. After 24 h the numbers decreased by 2.7 log10 CFU/cm2 for E. coli O157:H7 and by 0.63 log10 CFU/cm2 for L. monocytogenes. In the same experiment, the combined effect of reuterin and lactic acid was also investigated. Adding lactic acid (5%, vol/vol) to reuterin significantly enhanced (P < or = 0.05) the efficacy of reuterin. No additional effect (P < or = 0.05) was found when ethanol (40%) was added to the mixture of reuterin and lactic acid. To evaluate the preservative effect of reuterin during meat storage, reuterin was added to raw ground pork contaminated with E. coli O157:H7 or L. monocytogenes. Reuterin at a concentration of 100 AU/g resulted in a 5.0-log10 reduction of the viability of E. coli O157:H7 after 1 day of storage at 7 degrees C. Reuterin at a concentration of 250 AU/g reduced the number of the viable cells of L. monocytogenes by log10 3.0 cycles after 1 week of storage at 7 degrees C.  相似文献   

14.
The hides of cattle are the primary source of pathogens such as Escherichia coli O157:H7 that contaminate preevisceration carcasses during commercial beef processing. A number of interventions that reduce hide contamination and subsequent carcass contamination are currently being developed. The objective of this study was to determine the efficacy of ozonated and electrolyzed oxidizing (EO) waters to decontaminate beef hides and to compare these treatments with similar washing in water without the active antimicrobial compounds. Cattle hides draped over barrels were used as the model system. Ozonated water (2 ppm) was applied at 4,800 kPa (700 lb in2) and 15 degrees C for 10 s. Alkaline EO water and acidic EO water were sequentially applied at 60 degrees C for 10 s at 4,800 and 1,700 kPa (250 lb in2), respectively. Treatment using ozonated water reduced hide aerobic plate counts by 2.1 log CFU/100 cm2 and reduced Enterobacteriaceae counts by 3.4 log CFU/100 cm2. EO water treatment reduced aerobic plate counts by 3.5 log CFU/100 cm2 and reduced Enterobacteriaceae counts by 4.3 log CFU/100 cm2. Water controls that matched the wash conditions of the ozonated and EO treatments reduced aerobic plate counts by only 0.5 and 1.0 log CFU/100 cm2, respectively, and each reduced Enterobacteriaceae counts by 0.9 log CFU/100 cm2. The prevalence of E. coli O157 on hides was reduced from 89 to 31% following treatment with ozonated water and from 82 to 35% following EO water treatment. Control wash treatments had no significant effect on the prevalence of E. coli O157:H7. These results demonstrate that ozonated and EO waters can be used to decontaminate hides during processing and may be viable treatments for significantly reducing pathogen loads on beef hides, thereby reducing pathogens on beef carcasses.  相似文献   

15.
A study was conducted to determine if the effectiveness of an antimicrobial treatment for cooked ham and bologna would be increased or maintained when applied in a surface coating. Cooked 10-g disks of ham and bologna sausage received one of three treatments: no coating (control), coating with 0.2 g of 7% (wt/vol) gelatin gel (gel-control), or coating with 0.2 g of 7% gelatin gel containing 25.5 g/liter of lysozyme-nisin (1:3) plus 25.5 g/liter of EDTA (gel-treated). The samples were then inoculated with one of six test organisms: Brochothrix thermosphacta, Escherichia coli O157:H7, Lactobacillus sakei, Leuconostoc mesenteroides, Listeria monocytogenes, or Salmonella Typhimurium. Inoculated samples were vacuum packed and stored at 8 degrees C for 4 weeks. The antimicrobial gel treatment had an immediate bactericidal effect up to 4 log CFU/cm2 on the four gram-positive organisms tested (B. thermosphacta, Lactobacillus sakei, Leuconostoc mesenteroides, and Listeria monocytogenes) and inhibited the growth of these organisms during the 4 weeks of storage. The antimicrobial gel treatment also had a bactericidal effect on the growth of Salmonella Typhimurium during storage. The numbers of E. coli O157:H7 on ham were reduced by 2 log CFU/cm2 following treatment with both antimicrobial-containing and non-antimicrobial-containing gels during the 4-week storage period. No effect was observed on the growth of E. coli O157:H7 on bologna.  相似文献   

16.
J. Duan    Y. Zhao 《Journal of food science》2009,74(3):M131-M137
ABSTRACT:  This study investigated the antimicrobial efficiency of 3 essential oils (EOs), lemongrass, cinnamon leaf, and basil, and freeze–thaw treatment, alone or in combination, against Escherichia coli O157:H7 and Salmonella enterica Ser. Enteritidis inoculated in strawberry juice stored at 7 °C. EO of lemongrass or cinnamon leaf at 0.1 to 2 μL/mL and freezing at −23 °C for 24 or 48 h followed by thawing at 7 °C for 4 h all showed significant antimicrobial activities ( P < 0.05) against E. coli O157:H7 and S. Enteritidis in strawberry juice. The antimicrobial activity increased with increasing EO concentration and storage time, but extending freezing time from 24 to 48 h did not enhance the antimicrobial activity of freeze–thaw treatment ( P > 0.05). EO of lemongrass or cinnamon leaf at 0.1 μL/mL and freeze–thaw treatment alone obtained a 5 log10 reduction in the population of S. Enteritidis, while EOs at 0.1 to 0.3 μL/mL or freeze–thaw alone could not achieve a satisfactory protection against E. coli O157:H7 in strawberry juice. Combined EO and freeze–thaw treatment enhanced the overall antimicrobial effect against E. coli O157:H7, with adding EO before the freeze–thaw treatment showed a faster decontamination rate than when added EO after the freeze–thaw. EOs of lemongrass and cinnamon leaf at 0.1 or 0.3 μL/mL followed by the freeze–thawing resulted in a 5 log10 reduction in E. coli O157:H7 on the 5th and 2nd day of storage, respectively. This study suggested that combined EO and freeze–thaw treatment may be a suitable and inexpensive method to eliminate microorganisms that can be a hazard for the consumers of unpasteurized berry juices.  相似文献   

17.
This study evaluated resistance to sanitizing solutions of Escherichia coli O157:H7 cells forming biofilms on stainless steel coupons exposed to inoculated meat decontamination runoff fluids (washings). A previously acid-adapted culture of a rifampicin-resistant derivative of E. coli O157:H7 strain ATCC 43895 was inoculated in unsterilized or sterilized combined hot-water (85 degrees C) and cold-water (10 degrees C) (50/50 [vol/vol]) composite water (W) washings (pH 6.29 to 6.47) and in W washings mixed with 2% acetic acid (pH 4.60 to 4.71) or in 2% lactic acid W washings (pH 4.33 to 4.48) at a ratio of 1/99 (vol/vol). Stainless steel coupons (2 by 5 by 0.08 cm) were submerged in the inoculated washings and stored for up to 14 days at 15 degrees C. Survival of E. coli O157:H7 was determined after exposure (0 to 60 s for cells in suspension and 0 to 300 s for attached cells) to two commercial sanitizers (150 ppm peroxyacetic acid and 200 ppm quaternary ammonium compound) at 2, 7, and 14 days. E. coli O157:H7 attached more rapidly to coupons submerged in washings containing the natural flora than to those without. The attached cells were more resistant to the effects of the sanitizers than were the cells in suspension, and survival was highest in the presence of the natural flora. Attached cells in the presence of dilute acid washings were more sensitive to subsequent sanitizer treatments than were cells generated in the presence of W washings. Under the conditions of this study, cells of E. coli O157:H7 in W washings were more sensitive to acidic (peroxyacetic acid) than to alkaline (quaternary ammonium) sanitizers during storage. These results suggest that meat processing plants that apply no decontamination or that use only water washings of meat should consider using acidic sanitizers to enhance biofilm removal. Plants that apply both water and acidic washings may create a sublethal acid-stressing environment in the runoff fluids, sensitizing biofilm cells to subsequent sanitizing treatments.  相似文献   

18.
In this study, the effectiveness of dry-heat treatment in combination with chemical treatments (electrolyzed oxidizing [EO] water, califresh-S, 200 ppm of active chlorinated water) with and without sonication in eliminating Escherichia coli O157:H7 on laboratory-inoculated alfalfa, radish, and mung bean seeds was compared with that of dry-heat treatment in combination with irradiation treatment. The treatment of mung bean seeds with EO water in combination with sonication followed by a rinse with sterile distilled water resulted in reductions of approximately 4.0 log10 CFU of E. coli O157:H7 per g. whereas reductions of ca. 1.52 and 2.64 log10 CFU/g were obtained for radish and alfalfa seeds. The maximum reduction (3.70 log10 CFU/g) for mung bean seeds was achieved by treatment with califresh-S and chlorinated water (200 ppm) in combination with sonication and a rinse. The combination of dry heat, hot EO water treatment, and sonication was able to eliminate pathogen populations on mung bean seeds but was unable to eliminate the pathogen on radish and alfalfa seeds. Other chemical treatments used were effective in greatly reducing pathogen populations on radish and alfalfa seeds without compromising the quality of the sprouts, but these treatments did not result in the elimination of pathogens from radish and alfalfa seeds. Moreover, a combination of dry-heat and irradiation treatments was effective in eliminating E. coli O157:H7 on laboratory-inoculated alfalfa, radish, and mung bean seeds. An irradiation dose of 2.0 kGy in combination with dry heat eliminated E. coli O157:H7 completely from alfalfa and mung bean seeds, whereas a 2.5-kGy dose of irradiation was required to eliminate the pathogen completely from radish seeds. Dry heat in combination with irradiation doses of up to 2.0 kGy did not unacceptably decrease the germination percentage for alfalfa seeds or the length of alfalfa sprouts but did decrease the lengths of radish and mung bean sprouts.  相似文献   

19.
In situ and in vitro experiments were performed to assess the effects of solar radiation and predation by indigenous microflora on the relative die-off rates of a toxigenic strain of Escherichia coli O157:H7, commensal E. coli, and fecal enterococci in surface waters from ponds in agricultural watersheds. The objective of these experiments was to discern a mechanism of persistence of E. coli O157:H7 in surface waters compared to fecal indicator bacteria. Results of these experiments indicated that E. coli and fecal enterococci were affected by both insolation and apparent predation; whereas E. coli O157:H7 appeared to be resistant to both of these environmental stressors. The number of days to reach 99% die-off (T(99)-values) for E. coli O157:H7 was significantly greater than that for the indicator bacteria. The capacity to prolong die-off may be connected to the apparent persistence of E. coli O157:H7 in surface waters.  相似文献   

20.
This study was intended to evaluate the bactericidal effect of electrolyzed oxidizing water (EOW) and chlorinated water on populations of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes inoculated on avocados (Persea americana var. Hass). In the first experiment, inoculated avocados were treated with a water wash applied by spraying tap water containing 1 mg/liter free chlorine for 15 s (WW); WW treatment and then spraying sodium hypochlorite in water containing 75 mg/liter free chlorine for 15 s (Cl75); WW treatment and then spraying alkaline EOW for 30 s (AkEW) and then spraying acid EOW (AcEW) for 15 s; and spraying AkEW and then AcEW. In another experiment, the inoculated avocados were treated by spraying AkEW and then AcEW for 15, 30, 60, or 90 s. All three pathogen populations were lowered between 3.6 and 3.8 log cycles after WW treatment. The application of Cl75 did not produce any further reduction in counts, whereas AkEW and then AcEW treatment resulted in significantly lower bacterial counts for L. monocytogenes and E. coli O157:H7 but not for Salmonella. Treatments with AkEW and then AcEW produced a significant decrease in L. monocytogenes, Salmonella, and E. coli O157:H7 populations, with estimated log reductions of 3.9 to 5.2, 5.1 to 5.9, and 4.2 to 4.9 log CFU/cm2, respectively. Spraying AcEW for more than 15 s did not produce any further decrease in counts of Salmonella or E. coli O157:H7, whereas L. monocytogenes counts were significantly lower after spraying AcEW for 60 s. Applying AkEW and then AcEW for 15 or 30 s seems to be an effective alternative to reduce bacterial pathogens on avocado surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号