首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We studied the effects of a fish oil enriched diet on fatty acid composition of cerebral membranes and on several neurochemical and behavioral variables of monoaminergic function in rats. The frontal cortex, striatum, hippocampus and cerebellum were studied in rats fed fish oil (FPO, 50% salmon oil + 50% palm oil), which provided an (n-6)/(n-3) polyunsaturated fatty acid (PUFA) ratio of 0.14 versus 6. 19 in controls fed a diet containing a mixture of African peanut oil and rapeseed oil. In the FPO group compared to the control group, the major modifications in fatty acid composition of cerebral membranes included the following: higher levels in 22:6(n-3), lower levels in 20:4(n-6) and a significantly greater proportion of phosphatidylserine. Dopamine levels were 40% greater in the frontal cortex of rats fed FPO than from those fed the control diet. In this cerebral region there was also a reduction in monoamine oxidase B (MAO-B) activity and greater binding to dopamine D2 receptors. By contrast, a lower binding to dopamine D2 receptors (-7%) was observed in the striatum. Ambulatory activity was also reduced in FPO-fed rats, possibly related to observed changes in striatal dopaminergic receptors. This suggested that the level of (n-6) PUFA, which was considerably lower in the FPO diet than in the control diet, could act on locomotion through an effect on striatal dopaminergic function, whereas the high level of (n-3) PUFA could act on cortical dopaminergic function.  相似文献   

2.
The effect of dietary alpha-linolenic acid (18:3n-3) and its ratio to linoleic acid (18:2n-6) on platelet and plasma phospholipid (PL) fatty acid patterns and prostanoid production were studied in normolipidemic men. The study consisted of two 42-d phases. Each was divided into a 6-d pre-experimental period, during which a mixed fat diet was fed, and two-18 d experimental periods, during which a mixture of sunflower and olive oil [low 18:3n-3 content, high 18:2/18:3 ratio (LO-HI diet)], soybean oil (intermediate 18:3n-3 content, intermediate 18:2/18:3 ratio), canola oil (intermediate 18:3n-3 content, low 18:2/18:3 ratio) and a mixture of sunflower, olive and flax oil [high 18:3n-3 content, low 18:2/18:3 ratio (HI-LO diet)] provided 77% of the fat (26% of the energy) in the diet. The 18:3n-3 content and the 18:2/18:3 ratio of the experimental diets were: 0.8%, 27.4; 6.5%, 6.9; 6.6%, 3.0; and 13.4%, 2.7, respectively. There were appreciable differences in the fatty acid composition of platelet and plasma PLs. Nevertheless, 18:1n-9, 18:2n-6 and 18:3n-3 levels in PL reflected the fatty acid composition of the diets, although very little 18:3n-3 was incorporated into PL. Both the level of 18:3n-3 in the diet and the 18:2/18:3 ratio were important in influencing the levels of longer chain n-3 fatty acid, especially 20:5n-3, in platelet and plasma PL. Production of 6-keto-PGF1 alpha was significantly (P < 0.05) higher following the HI-LO diet than the LO-HI diet although dietary fat source had no effect on bleeding time or thromboxane B2 production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of egg yolk fatty acid composition on the uptake and utilization of essential n-6 and n-3 fatty acids by the developing chick embryo was studied. Eggs were enriched with n-9, n-3, or n-6 fatty acids by incorporating sunflower seed high in oleic acid (C18:1 n-9), flax seed rich in linolenic acid (C18:3 n-3), or sunflower seed high in linoleic acid (C18:2 n-6) into the laying hen diets. Fertile eggs were collected and incubated. The fatty acid composition of eggs and newly hatched chicks were compared. Feeding diets containing flax seed increased (P < .05) total n-3 fatty to 528.4 mg compared with 53.9 and 39.3 mg for eggs from hens fed diets with high oleic acid or regular sunflower seed, respectively. Levels of C18:2 n-6 and monounsaturated fatty acids were higher in eggs from hens fed diets containing regular or high oleic acid sunflower seeds. Dietary fat did not influence the total lipid content of the egg yolk or total lipids of chick tissues. The fatty acid composition of the hatched progeny was significantly altered by egg yolk lipids. However, the percentage incorporation of essential n-6 and n-3 fatty acids into the progeny increased when yolk sources of these fatty acids were low. The developing chick embryo appeared to preferentially take up docosahexaenoic acid and arachidonic acid from the yolk lipids. Evidence also suggests that conversion of C18:2 n-6 and C18:2 n-3 to longer chain n-3 or n-6 fatty acids occurs during the incubation period.  相似文献   

4.
The effects of different dietary oils on the fatty acid compositions of liver phospholipids and the desaturation and elongation or [1-14C]18:3n-3 and [1-14C]18:2n-6 were investigated in isolated hepatocytes from Atlantic salmon. Atlantic salmon smolts were fed diets containing either a standard fish oil (FO) as a control diet, a 1:1 blend of Southern Hemisphere marine oil and tuna orbital oil (MO/TO), sunflower oil (SO), borage oil (BO), or olive oil (OO) for 12 wk. The SO and BO diets significantly increased the percentages of 18:2n-6, 18:3n-6, 20:2n-6, 20:3n-6, and total n-6 polyunsaturated fatty acids (PUFA) in salmon liver lipids in comparison with the FO diet. The BO diet also increased the percentage of 20:4n-6. Both the SO and BO diets significantly reduced the percentages of all n-3 PUFA in comparison with the FO diet. The OO diet significantly increased the percentages of 18:1n-3, 18:2n-6, total monoenes, and total n-6 PUFA in liver lipids compared to the FO diet, and the percentages of all n-3 PUFA were significantly reduced. With [1-14C]18:3n-3, the recovery of radioactivity in the products of delta 6 desaturation was significantly greater in the hepatocytes from salmon fed SO, BO, and OO in comparison with the FO diet. The BO diet also increased the recovery of radioactivity in the products of delta 5 desaturation. Only the BO diet significantly affected the desaturation of [1-14C]18:2n-6, increasing recovery of radioactivity in both delta 6- and delta 5-desaturation products. In conclusion, dietary BO, enriched in gamma-linolenic acid (18:3n-6), significantly increased the proportions of both 20:3n-6 and 20:4n-6 in salmon liver phospholipids and also significantly increased the desaturation of both 18:2n-6 and 18:3n-3 in salmon hepatocytes. The possible relationships between dietary fatty acid composition, tissue phospholipid fatty acid composition, and desaturation/elongation activities are discussed.  相似文献   

5.
Studies were performed to determine whether feeding diets with differing fatty acid content and composition had an influence on systolic blood pressure in the rat. Weanling male rats were fed standard laboratory chow (2.9% fat in total), or synthetic diets (10% fat in total) containing fish oil, butter, coconut oil or corn oil, for 5 weeks. Coconut oil and butter diets were rich in saturated fatty acids, whilst fish oil and corn oil were rich in the n-3 and n-6 unsaturated fatty acids respectively. Systolic blood pressure was measured using an indirect tail-cuff method at the end of the feeding period, and compared to a group of weanling rats. Feeding the different diets did not alter the growth of the rats, so all animals were of similar weights at the time of blood pressure determination. Control (chow fed) animals, at nine weeks of age, had higher systolic blood pressures than the weanling, baseline control group. Fish oil fed rats had similar pressures to the chow fed rats. Corn oil fed rats had significantly lower systolic pressures than the controls. The rats led the diets rich in saturated fatty acids (butter and coconut oil) had significantly higher blood pressures than all other groups. Systolic blood pressure was found to be significantly related to the dietary intakes of saturated and unsaturated fatty acids. The dietary intake of linoleic acid was significantly higher in corn oil fed rats than in other groups. Systolic blood pressure was inversely related to linoleic acid intake. Feeding a diet rich in saturated fatty acids significantly increases blood pressure in the rat. A high intake of n-6 fatty acids, and in particular linoleic acid, appears to have a hypotensive effect. Prenatal exposure of the rats to a maternal low protein diet, abolished the hypertensive effects of the coconut oil diet and the hypotensive effect of the corn oil diet upon young adult females. The intrauterine environment may, therefore, be an important determinant of the effects of these fatty acids on blood pressure in later life.  相似文献   

6.
Four groups of male weanling rats were fed during three months, diets different in the nature of fats and the activity of 5' nucleotidase and fatty acid composition of brain and liver microsomes were studied. Group A were fed a standard commercial diet, group B a fat free-diet and group C and D a fat free-diet, containing respectively 10% of peanut-rapeseed oil and 10% of salmon oil. In brain and liver microsomes, 5'-nucleotidase activity increased throughout the development for all diets (except for the fat-free diet). Slight differences were found in rats fed the peanut-rapeseed oil diet compared to controls estimated at the same time. However, in animals fed the fish-oil diet, 5' nucleotidase had the highest activity in both brain and liver microsomes. Marked changes occurred in the fatty acid patterns of brain and liver microsomes among the various groups. The greatest alterations were found in the liver microsomes. In brain and liver microsomal membranes the fat-free diet induced an increase in monounsaturated fatty acids, an synthesis of eicosatrienoic acid, and a decrease in (n-6) and (n-3) polyunsaturated fatty acids. Animals fed a peanut-rapeseed oil and control diet showed similar fatty acid patterns in liver and brain microsomes. However, when rats were fed a fish-oil diet, the liver microsomal membranes were highly enriched in eicosapentaenoic and docosahexaenoic acids, and simultaneously there was a decrease in arachidonic acid. These results suggest that manipulation of the lipid environment influences 5'-nucleotidase activity by the interaction of the enzyme with specific membrane lipids.  相似文献   

7.
Three diets containing either borage oil (BO) and southern hemisphere fish oil Marinol (MO), or BO and tuna orbital oil (TO), or a northern hemisphere fish oil (FO) were fed to duplicate groups of turbot (Scophthalmus maximus) of initial mean weight 1.2 g for a period of 12 weeks. The BO/MO and BO/TO diets were enriched in gamma-linolenic (18:3n-6, GLA) and eicosapentaenoic (20:5n-3, EPA) acids, and GLA and docosahexaenoic acid (22:6n-3, DHA), respectively. No differences were observed in final weights or growth rates, either between duplicate tanks or between dietary treatments. Half of the FO-fed fish sampled showed a histopathological lesion indicative of lipoid liver degeneration while the other treatments only showed a slight incidence of the same pathology. The fatty acid compositions of carcass and tissues broadly reflected the dietary input. In general, fish fed the BO/MO diet had increased levels of 18:2n-6, 18:3n-6, 20:3n-6 and 20:5n-3, but a lower level of 22:6n-3, compared to fish fed FO. In fish fed the BO/TO diet, levels of 18:2n-6, 18:3n-6, 20:3n-6 and 20:4n-6 were increased while levels of 20:5n-3 and 22:5n-3 were reduced, compared to fish fed FO. Concentrations of thromboxanes B (TXB) and leukotrienes B (LTB), derived from 20:4n-6 and 20:5n-3, were measured in plasma and stimulated blood cells. Levels of TXB2 were greatest in fish fed the BO/TO diet compared to both other treatments, while LTB4 was decreased in fish fed the BO/MO diet compared to both other treatments. In a stress test which involved anaesthesia followed by measurement of recovery times, fish fed the BO/MO diet had significantly lower recovery times compared to fish fed the FO diet.  相似文献   

8.
Typically athletes are advised to increase their consumption of carbohydrates for energy and, along with the general population, to reduce consumption of saturated fats. It is now recognized that fats are not identical in their influence on metabolism, and we argue that the composition of the polyunsaturated fat component should not be ignored. The aim of this study was to manipulate the dietary fatty acid profile in a high-carbohydrate diet in order to investigate the effect of dietary polyunsaturates on submaximal endurance performance in rats. Rats were fed one of three isoenergetic diets containing 22 energy percentage (E%) fat for 9 wk. The diets comprised an essential fatty acid-deficient diet (containing mainly saturated fatty acids); a diet high in n-6 fatty acids, High n-6; and a diet enriched with n-3 fatty acids, High n-3. Submaximal endurance in rats fed the High n-3 diet was 44% less than in rats fed the High n-6 diet (P < 0.02). All rats were then fed a standard commercial laboratory diet for a 6-wk recovery period, and their performances were reevaluated. Although endurance in all groups was lower then at 9 wk, it was again significantly 50% lower in the High n-3 group than the High n-6 group (P < 0.005). Although n-3 fats are considered beneficial for cardiovascular health, they appear to reduce endurance times, and their side effects need to be further investigated.  相似文献   

9.
We examined the effect of three dietary fats, safflower oil (SAF) rich in linoleic acid, borage oil (BOR) rich in gamma-linolenic acid, and perilla oil (PER) rich in alpha-linolenic acid, on the lipid metabolism, and chemical mediator and immunoglobulin levels in Sprague-Dawley rats, as well as the dietary effect of sesame-derived antioxidative sesamin. The serum cholesterol, phospholipid, triglyceride, prostaglandin E2 level and splenic leukotriene B4 level were lower in the rats fed on BOR or PER than in those fed on SAF. SES feeding suppressed the expression of the lipid-decreasing effect of BOR, but not in the rats fed on PER. In respect of the fatty acid composition of the liver and spleen, PER feeding gave a lower arachidonic acid level, and higher eicosapentaenoic and docosahexaenoic acid levels than SAF feeding did, while the effect of BOR feeding was marginal. The effect of SES feeding on fatty acid composition was much smaller than that of dietary fats. In respect of immunoglobulin production, PER + SES feeding gave the lowest IgE productivity in the mesenteric lymph node lymphocytes. These results suggest that PER feeding regulated lipid metabolism and exerted an anti-allergic effect by a different mechanism from that with BOR feeding.  相似文献   

10.
Fish oil is rich in the long chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); typically these fatty acids constitute 20 to 25 g/100 g total fatty acids in fish oil. Feeding rodents diets rich in fish oil has been shown to decrease lymphocyte proliferation and natural killer cell activity. It is not known what level of EPA + DHA is required in the diet to exert these effects. This question was addressed in the current study. Weanling rats were fed on high fat (178 g/kg) diets which contained 4.4 g alpha-linolenic acid (control) or 4.4 g EPA + DHA (4.4 EPA + DHA) or 6.6 g EPA + DHA (6.6 EPA + DHA)/100 g total fatty acids. The n-6 to n-3 polyunsaturated fatty acid ratio was maintained at approximately 7. The fatty acid compositions of the serum and of spleen leukocytes were markedly influenced by that of the diet. Spleen lymphocyte proliferation in response to concanavalin A, spleen natural killer cell activity and PGE2 production by spleen leukocytes were reduced by feeding the EPA + DHA diets compared with feeding the control diet; the 4.4 and 6.6 EPA + DHA diets caused very similar reductions. The 4.4 EPA + DHA diet reduced popliteal lymph node weight following a localised graft versus host response; this response was not investigated in rats fed the 6.6 EPA + DHA diet. The reductions in lymphocyte functions and in the in vivo graft versus host response caused by the EPA + DHA diets were similar to those previously reported following the feeding of diets rich in fish oil. Thus, this study shows that diets containing relatively low levels of EPA + DHA (20 to 25% of the level found in fish oil) exert immunomodulatory effects. Furthermore, this study suggests that the maximal effect of EPA + DHA is exerted when these fatty acids constitute a level of less than or equal to 4.4 g/100 g total dietary fatty acids.  相似文献   

11.
12.
Human erythrocytes in the circulation undergo dynamic oxidative damage involving membrane lipid peroxidation and protein aggregation during aging. The present study was undertaken to determine the effect of n-3 fatty acid supplementation on lipid peroxidation and protein aggregation in the circulation and also the in vitro susceptibility of rat erythrocyte membranes to oxidative damage. Wistar male rats were fed a diet containing n-6 fatty acid-rich safflower oil or n-3 fatty acid-rich fish oil with an equal amount of vitamin E for 6 wk. n-3 Fatty acid content in erythrocyte membranes of rats fed fish oil was significantly higher than that of rats fed safflower oil. The degree of membrane lipid peroxidation and protein aggregation of rats fed fish oil was not significantly higher than that of rats fed safflower oil when the amounts of phospholipid hydroperoxides, thiobarbituric acid-reactive substances, and detergent-insoluble protein aggregates were measured. When isolated erythrocytes were oxidized under aerobic conditions in the presence of Fe(III), the degree of membrane lipid peroxidation of erythrocytes from rats fed fish oil was increased to a greater extent than that of rats fed safflower oil, whereas the degree of membrane protein aggregation of both groups was increased in a similar extent. Hence, n-3 fatty acid supplementation did not affect lipid peroxidation and protein aggregation in membranes of circulating rat erythrocytes, and the supplementation increased the susceptibility of isolated erythrocytes to lipid peroxidation, but not to protein aggregation, under the aerobic conditions. If a sufficient amount of vitamin E is supplied, n-3 fatty acid supplementation may give no undesirable oxidative effects on rat erythrocytes in the circulation.  相似文献   

13.
1. Eighty rats were randomized into four groups receiving one of the following diets: rat chow containing (1) 6% soybean oil, (2) 6% primrose oil, (3) 6% fish oil, (4) a combination of 4.5% primrose and 1.5% fish oil. 2. Following two months of each regimen, the rats were sacrificed by microwave irradiation and the brain's fatty acid composition was analysed with gas chromatography for each of the following regions: frontal cortex, striatum, occipital cortex, hippocampus, hypothalamus, cerebellum and pituitary. 3. Linoleic acid was decreased by both primrose and fish oil supplementations. The fish oil substitution resulted in a significant elevation of 20:3n-6, a decrease of 22:4n-6 and a non-significant decrease of 20:4n-6, probably reflecting inhibition of delta-5-desaturation. At the same time the fish oil diet significantly elevated 22:5n-3 while 22:5n-6 was decreased. 4. The primrose oil diet lowered the n-3/n-6 ratio in all regions except in the cerebellum. In contrast, the fish oil diet elevated the n-3/n-6 ratio in all regions. 5. The results demonstrate that changes in dietary fat composition can alter the fatty acid composition of the adult rat brain and that these effects are region specific. 6. This is of interest since metabolites of essential fatty acids may be involved in physiological and pathological processes in the brain and it has been hypothesized that dietary intake of fats may influence the outcome of psychiatric disorders such as schizophrenia.  相似文献   

14.
Populations in Western countries consume an excess of polyunsaturated fatty acids (PUFA), even during pregnancy. Since (n-6) PUFA is critical for brain development, we studied whether a high maternal consumption of this fatty acid alters offsprings' affective-like behaviors and (n-6) PUFA-induced protein kinase C (PKC) activity in the brain. Three different strains of pregnant mice were fed isocaloric diets containing either 16% (control) or 43% (high) energy derived from fat high in (n-6) PUFA (corn oil: Balb/c and CD-1 mice, or soybean oil: C3H mice) throughout gestation. From birth onward dams and offspring were fed a nonpurified diet containing 12% energy from a variety of fats. Two- to 12-month-old female and male offspring of dams exposed to a high (n-6) PUFA diet during pregnancy were significantly more active in an open field, more aggressive in the resident-intruder test and spent less time immobile in the swim test than offspring of dams exposed to a control (n-6) PUFA diet. Significantly greater PKC activity in the hypothalamus and moderately less PKC activity in the whole brain (P = 0.10) were seen in the 2-month-old female and male high (n-6) PUFA offspring compared to controls. Our findings indicate that in utero exposure to a high (n-6) PUFA diet subsequently increases locomotor activity and aggression, and reduces immobility in the swim test. The mechanism mediating these effects may be linked to an increased PKC activity in the hypothalamus.  相似文献   

15.
The effect of dietary fats on the chemical composition and enzyme activities has been studied in intestinal brush border membranes (BBM) or rats. Animals were given commercial rat pellet diet (RP) or semisynthetic diet rich in either saturated [coconut oil (CCO))] or polyunsaturated [n-6, corn oil (CO) or n-3, fish oil (FO)] fat at the 10% level for 5 weeks. The membrane cholesterol/phospholipid ratio was augmented in CO- or RP-fed rats. There was an increase in level of saturated fatty acids in BBM from CCO- or FO-fed animals. n-3 polyunsaturated fatty acid content was raised in FO-fed rats, while the proportion of linoleic acid and arachidonic acid was enhanced in animals given a CO diet. Membrane fluidity was in the order of CCO < RP = CO < FO. The membrane hexose content was high (p < 0.05) in the CCO group. Hexosamines were elevated (p < 0.05) in CCO- or FO-fed rat brush borders. Membrane fucose was unaltered, while sialic acid content was elevated in CO- (p < 0.05) and FO- (p < 0.01) fed vs. CCO-fed rats. Lectin binding to brush borders corroborated these findings. The activities of alkaline phosphatase, sucrase and lactase were augmented (p < 0.001) in CCO-fed animals. Leucine-aminopeptidase and sucrase activities were depressed by FO feeding. The activities of PNP-beta-glycosidases were the highest in FO-fed rats. These results indicate that dietary fat quality markedly affects microvillus membrane lipid composition, glycosylation and enzyme functions in rat intestine.  相似文献   

16.
Effects of different dietary fats on plasma, hepatic and biliary lipids were determined in male golden Syrian hamsters (Mesocricetus auratus) fed on purified diets for 7 weeks. Diets were made by blending different fats containing characteristic fatty acids: butter (14:0 + 16:0), palm stearin (16:0), coconut oil (12:0 + 14:0), rapeseed oil (18:1), olive oil (18:1) and sunflowerseed oil (18:2). In all diets except the sunflowerseed oil diet dietary 18:2 was held constant at 2% energy. Total fat supplied 12% of energy and cholesterol was added at 4 g/kg diet. Plasma cholesterol and triacyglycerol concentrations were increased by dietary cholesterol. After 7 weeks, plasma cholesterol concentrations were highest with the palm stearin, coconut oil and olive oil diets (8.9, 8.9 and 9.2 mmol/l) and lowest with the rapeseed oil and sunflowerseed oil diets (6.7 and 5.5 mmol/l) while the butter diet was intermediate (8.5 mmol/l). Hepatic cholesterol concentration was highest in hamsters fed on the olive oil diet and lowest with the palm stearin diet (228 v. 144 mumol/g liver). Biliary lipids, lithogenic index and bile acid profile of the gall-bladder bile did not differ significantly among the six diets. Although the gallstone incidence was generally low in this study, three out of 10 hamsters fed on the palm stearin diet developed cholesterol gallstones. In contrast, no cholesterol gallstones were found with the other diets. Rapeseed and sunflowerseed oils caused the lowest plasma cholesterol and triacyglycerol concentrations whereas olive oil failed to demonstrate a cholesterol-lowering effect compared with diets rich in saturated fatty acids. Since 18:2 was kept constant at 2% of energy in all diets, the different responses to rapeseed and olive oils could possibly be attributed to their different contents of 16:0 (5.6% v. 12.8% respectively). Other possible explanations are discussed.  相似文献   

17.
During perinatal development, docosahexaenoic acid (22:6n-3) accumulates extensively in membrane phospholipids of the nervous system. To evaluate the n-3 fatty acid requirements of fetal and suckling rats, we investigated the accumulation of 22:6n-3 in the brain and liver of pup rats from birth to day 14 postpartum when their dams received increasing amounts of dietary 18:3n-3 (from 5 to 800 mg/100 g diet) during the pregnancy-lactation period. The fatty acid composition of brain and liver phospholipids of pups, as well as that of dam's milk, was determined. At birth, 22:6n-3 increased regularly to reach the highest level when the maternal diet contained 800 mg 18:3n-3/100 g. On days 7 and 14 postpartum, brain 22:6n-3 plateaued at a maternal dietary supply of 200 mg/100 g. Docosapentaenoic acid (22:5n-6) had the opposite temporal pattern. The unusually high concentration of eicosapentaenoic acid (20:5n-3) in liver and dam's milk observed at the highest 18:3n-3 intake suggests an excessive dietary supply of this fatty acid. All these data suggest that the n-3 fatty acid requirements of the pregnant rat are around 400 mg 18:3n-3 and those of the lactating rat at 200 mg (i.e., 0.9 and 0.45% of dietary energy, respectively). The values of 18:3n-3 and 22:6n-3 milk content which allowed brain 22:6n-3 to reach a plateau value in suckling pups were 1% of total fatty acids and 0.9% (colostrum) to 0.2% (mature milk), respectively. These levels are similar to those recommended for infant formulas.  相似文献   

18.
Atlantic salmon (Salmo salar) post-smolts were fed diets containing either Fosol (FO), a North Sea fish oil, sunflower oil (SO), linseed oil (LO) or Marinol K (MO), a southern hemisphere fish oil rich in 20:5(n-3) for 12 weeks. A macrophage-enriched leucocyte preparation was obtained from head kidney and the fatty acid compositions of the individual membrane phospholipids measured. In general phospholipids from SO- and LO-fed fish had increased 18:2(n-6), 20:2(n-6) and 20:3(n-6) compared to the fish oil treatments while LO-fed fish had lower 20:4(n-6) than any other dietary treatment. Fish fed LO also had increased 18:3(n-3), 18:4(n-3), 20:3(n-3) and 20:4(n-3). The 20:5(n-3) content of kidney macrophage-enriched leucocyte phospholipids was highest in MO-fed fish followed by FO- and LO-fed fish with the lowest level in fish fed SO. The overall effect on the ratio of eicosanoid precursors, 20:4/20:5, showed the highest value in SO-fed fish and the lowest in fish fed LO. Production of LTB5 by kidney macrophage-enriched leucocytes stimulated with A23187 was highest in MO-fed fish and lowest in those fed SO. Production of LTB4 was greatest in SO-fed fish and lowest in fish fed LO. Serum Ig levels were significantly affected by dietary treatment with highest values in fish fed FO and SO and lowest in fish fed MO and LO.  相似文献   

19.
The aim of the study was to evaluate the effects of cafeteria feeding on the composition of fatty acids in retroperitoneal fat pad and also to determine what happens to fatty acids when rats previously fed the cafeteria diet are returned to regular rat chow. The study of the post-cafeteria rats enabled us to determine the effects of dietary induced excess weight in the absence of artefactual interferences from the diet because these rats, unlike the cafeteria obese rats, ate the same diet as controls. In response to cafeteria feeding there were increases in the majority of adipose tissue fatty acids. However, significant decreases were observed in the relative proportions of 18:2n-6 and in two related n-6 polyunsaturated fatty acids (18:3n-6 and 20:3n-6), as well as in 16:1. In the post-cafeteria obesity model the previous dietary influence on fatty acid composition was still evident. The maintenance of both the high levels and proportions of 18:1 and the decrease of 16:1 percentage in the post-cafeteria rats argues in favour of an alteration in the activity of the elongation metabolic pathway. Certain changes affecting polyunsaturated fatty acid adipose depot composition of obese rats, mainly the decreased levels of 18:2n-6, are long lasting and could be related to the maintenance of the obese status. On the whole, although the fatty acid composition of adipose tissue is influenced by the composition of the diet, there are some differences in both the maintenance of the effects and also in the selectivity of adipose tissue for the different fatty acids of obese and lean rats.  相似文献   

20.
This study examined the effects of dietary (n-6) and (n-3) polyunsaturated fatty acids (PUFA) and acetylsalicylic acid (ASA) on bone ash content, morphometry, fatty acid composition, ex vivo PGE2 biosynthesis, tissue IGF-I concentration, and serum alkaline phosphatase (ALPase) activity in chicks. Newly hatched chicks were fed a semipurified diet containing soybean oil (S) or menhaden oil / safflower oil (M) at 90 g/kg. At 4 days of age, chicks were divided into four equal treatment groups receiving 0 mg [symbol: see text] or 500 mg [symbol: see text] of ASA/kg of diet: S[symbol: see text]ASA, M[symbol: see text]ASA, S[symbol: see text]ASA, and M[symbol: see text]ASA. Lipid and ASA treatments did not affect bone length, bone ash, or bone mineral content in chicks. Chicks fed M had increased fractional labeled trabecular surface and tissue level bone formation rates, independent of ASA treatment, compared with those given S. A significant fat x ASA interaction effect was found for trabecular bone volume, thickness, separation, and number. Chicks fed S had higher 20:4(n-6) but lower 20:5(n-3) concentrations in liver and bone compared with those given M. Ex vivo PGE2 biosynthesis was higher in liver homogenates and bone organ cultures of chicks fed S compared with the values for those given M at 17 days. ASA treatment decreased ex vivo PGE2 production in liver homogenates and bone organ cultures of chicks, independent of the dietary lipids. Chicks fed ASA had a lower concentration of IGF-I in tibiotarsal bone compared with those not given ASA at 19 days. Serum ALPase activity was higher in chicks given M compared with those fed S, but the values were reversed with ASA feeding. This study demonstrated that both dietary fat and ASA modulated bone PGE2 biosynthesis, and that (n-3) PUFA and fat x ASA interactions altered bone morphometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号