首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
Activated macrophages produce several matrix metalloproteinases (MMPs), a family of extracellular matrix (ECM)-degrading enzymes, during wound healing and in other inflammatory states. In response to brain injury, brain microglia become "activated," in a way similar to peripheral tissue macrophages, a process which includes differentiation and probably invasion and proliferation. Little is known about the ECM-degrading MMPs that are secreted by microglia upon activation. Thus, it was of interest to determine whether activated microglia secrete MMPs. Conditioned media samples obtained from cultured microglia that were stimulated with various activating agents were subjected to gelatin-substrate zymography. Microglia constitutively express low levels of a 94-kDa gelatinase (GLase) activity. Treatment with LPS, zymosan, and fixed Staphylococcus aureus for 24 hr stimulated the activity of the 94-kDa GLase, 4-20-fold, in a dose-dependent manner. Addition of INF gamma inhibited the LPS-stimulated activity of MMP-9. LPS, zymosan, and fixed Staphylococcus aureus also stimulated the secretion of IL-6 from microglia in a dose-dependent manner. The 94-kDa GLase activity was Ca++ dependent, it was inhibited by 1,10-phenanthroline, and it was activated by organomercurial compounds. When immunoblots were performed using specific antisera against the 94-kDa gelatinase B (MMP-9) with untreated and LPS-stimulated conditioned medium samples, a 94-kDa immunopositive band was observed. Thus, it appears that the 94-kDa GLase is gelatinase B (MMP-9). These results indicate that activators of peripheral macrophages are potent secretagogues for the MMPs in cultured microglia. The ability of activated microglia to secrete MMPs suggests that these enzymes may play an important function in the brain parenchyma during inflammatory states.  相似文献   

2.
3.
Matrix metalloproteinases (MMPs) are involved in remodelling extracellular matrix. Gelatinase B (MMP-9) is an inducible 92 kDa MMP expressed by neutrophils, microglia, and endothelial cells. Gelatinase A (MMP-2) is a 72 kDa MMP, constitutively expressed in brain. Elevated MMP activity has been linked to various pathologic conditions, and the therapeutic benefit of MMP inhibitors is under study in a few experimental models. Using gelatin zymography, we have compared activities of these MMPs in infarcted and matched non-infarcted cerebral tissue from eight subjects dying at intervals of less than 2 h to several years after a stroke. Gelatinase B activity was markedly elevated in the infarcted tissue at two days post-infarction, and remained elevated in cases dying months after the event. Increases in gelatinase A activity were subtle at 2-5 days; they were marked and significant in cases dying at 4 months and later. The findings indicate distinct temporal profiles of post-ischemic gelatinase activity in human brain, with earlier but equally persistent elevation in gelatinase B when compared to gelatinase A.  相似文献   

4.
5.
The objective of this study was to determine if an immortalized mammalian chondrocyte cell line had a profile of matrix metalloproteinase (MMP) expression that was consistent with what has been reported for primary chondrocytes in vitro and in vivo. A combination of zymography, Western, and Northern analysis was used to examine the expression of MMPs that are relevant to cartilage degradation. Both interleukin-1beta and tumor necrosis factor alpha induced a 4- to 9-fold increase in the level of MMP-9 expression in conditioned media, and a 17- to 24-fold increase in MMP-3 mRNA. Other compounds such as basic fibroblast growth factor and staurosporine each increased MMP-9 expression individually and potentiated the effects of the two cytokines. Transforming growth factor beta had no positive or inhibitory effects. N-methyl arginine blocked the increase in nitric oxide observed following treatment with the cytokines but did not prevent the increased expression of MMPs. The pattern of metalloproteinase expression observed in IRC cells and the response to cytokines is very similar to what has been reported during the pathogenesis of osteoarthritis. The IRC cells should be useful as a model system to study basic mechanisms controlling chondrocyte MMP expression and to identify pharmacological modulators of this process.  相似文献   

6.
Three constitutive gelatinases in human plasma were identified and characterized relative to known matrix metalloproteinase (MMP) gelatinases: MMP-2 (fibroblast 72-kDa) and MMP-9 (neutrophil 92-, 130-, and 225-kDa). Substrate gel electrophoresis (gelatin zymography) revealed an apparent Mw of 78-, 82-, and 89-kDa for these gelatinases. Densitometry revealed that MMP-9 and MMP-2 were highly calcium sensitive requiring 50-150 microM and 500 microM calcium for half-maximal activity, respectively. Of the new gelatinases, only the 89-kDa form demonstrated slight calcium activation. The three gelatinases were unaffected by known MMP inhibitors: EDTA (5 mM), 1,10-phenanthroline (2 mM), and pepstatin (18 microM). Serine and thiol protease inhibitors (leupeptin, aprotinin, PMSF, TLCK, TPCK, antichymostatin, antipain) were also ineffective. Solution-phase IEF revealed that the 78- and 82-kDa forms focused at neutral pI 6.72-7.95 whereas the 89-kDa focused at an acidic pI 4.89-5.18 (similar to neutrophil and fibroblast forms). The data indicate that these gelatinases are not MMPs or partially activated MMPs. Their role in normal and pathological conditions is not known.  相似文献   

7.
8.
1. INTRODUCTION: Studies of tumor invasion and metastases have focused on the degradation of the basement membrane, which is predominantly made up of type IV collagen, laminin, and heparan sulfate proteoglycans. Matrix metalloproteinase-2 (MMP-2) and MMP-9, which can degrade type IV collagen, are implicated in cancer invasion and metastasis. Released and activated MMPs are controlled by specific tissue inhibitors of metalloproteinase (TIMP). In the present study, we have examined gelatinolytic and TIMP activity in the conditioned medium of human normal and cancer tissues by zymography and reverse zymography. 2. MATERIALS AND METHODS: 1) Tissues. Tissues were obtained at operation after informed consent was got from each patient. Sliced tissues were incubated in serum-free medium for 4 or 24 h at 37 degrees C. Human ovarian cancer cells (SAOV) were cultured for 24 h in serum-free medium containing conditioned medium of stromal tissues. After washing by PBS 3 times, SAOV cells were cultured for a further 24 h. 2) Zymography. Conditioned medium was subjected to SDS polyacrylamide gel containing 0.3 mg/ml of gelatin in zymography, and purified MMPs were added further in reverse zymography. After electrophoresis the gel was washed with Triton X-100, and incubated for 20 h at 37 degrees C in the reaction buffer. The gel was then stained with Coomassie brilliant blue. The gelatinase and TIMP activities were detected as unstained and stained bands, respectively. The photographs of the gels were scanned with a densitometer. 3) Other method. TIMP-1 levels of conditioned medium were assayed by ELISA kit. 4) Statistics. Statistical comparisons were made by Mann-Whiteny U test. 3. RESULTS AND DISCUSSION: We have examined the gelatinolytic activity in gynecologic normal and cancer tissues by zymography and reverse zymography. Ovarian, cervical, and endometrial cancer tissues demonstrated higher gelatinolytic activity than normal tissues. The major gelatinases were those with molecular weight of 92 and 72kD, which corresponded to MMP-9 and MMP-2, respectively. The ratio of MMP 9 to MMP-2 was significantly higher in 3 types of cancer tissues than in normal tissues. Reverse zymography demonstrated that TIMP-1 and TIMP-2 were present in all tissues, and the ratio of TIMP-1 to TIMP-2 was significantly higher in 3 types of cancer tissues than in normal tissues. These findings suggested that MMP-9 and TIMP-1 were more associated with cancer phenotype than other types of MMP and TIMP. The influence of human stromal tissues (peritoneum, myometrium, ovary) on the secretion of MMPs and TIMPs was examined by addition of these stromal tissues culture medium to human ovarian cancer cells (SAOV). All conditioned medium of stromal tissues could increase in both MMP-2, MMP-9, TIMP-1, and TIMP-2 activity in SAOV cells. Fraction (> 100kD) of conditioned medium of peritoneum could increase remarkably in MMP-9, and this increase could be inhibited by anti alpha 5 antibody, which is the most popular receptor of fibronectin. Furthermore, the addition of fibronectin to SAOV cells induced increase in the secretion of MMP-9. These results demonstrated that one of the factors included in conditioned medium of peritoneum was fibronectin. We found that interferon beta could suppressed the secretion of MMP-2 and invasion in choriocarcinoma cells. However, no effect of interferon beta was observed in SAOV cells. Several flavonoids were screened to have ability to suppress the secretion of MMPs. All trans retinoic acid (RA) could suppress the secretion of MMPs in SAOV cells in time and concentration dependent manners. Further, RA could inhibited the invasion of SAOV cells by invasion assay using boyden chamber coated with matrigel.  相似文献   

9.
PURPOSE: Matrix metalloproteinases (MMP) are a family of extracellular matrix degrading enzymes associated with the development of neovascularization. To investigate the possible role of these enzymes in choroidal neovascularization, the mRNA expression of MMPs and tissue inhibitors of metalloproteinases (TIMPs) were analyzed in subfoveal fibrovascular membranes from patients with age-related macular degeneration (AMD). METHODS: Surgically removed subfoveal fibrovascular membranes from five eyes were analyzed for the expression of MMP and TIMP mRNA. In situ hybridization anti-sense and sense riboprobes were generated using DNA complementary to human collagenase (MMP-1), 72 kDa gelatinase (MMP-2), stromelysin (MMP-3), 92-kDa gelatinase (MMP-9), TIMP-1, TIMP-2, and TIMP-3. Vascular endothelial cells were detected using immunostaining for von Willebrand factor. RESULTS: MMP-2 and MMP-9 mRNA were detected in all specimens. Most of the membranes also expressed TIMP-1 and TIMP-3 mRNA, and two of the membranes expressed TIMP-2 mRNA. MMP-2, TIMP-1, and TIMP-2 mRNA had a similar overall distribution that was relatively uniform within the vascularized membrane stroma. MMP-2 expression appeared to be localized mainly to the vascular endothelial cells, whereas TIMP-1 and TIMP-3 were detected in other cell types such as fibroblastlike cells. MMP-9 expression was distinctly expressed by cells at the margins of the membranes and often in proximity to a thickened Bruch's membrane-like layer under the retinal pigment epithelial cells. TIMP-3 mRNA was strongly expressed within the retinal pigment epithelial cell layer and also in the stroma of one membrane. None of the membranes showed detectable MMP-1 or MMP-3 expression. CONCLUSIONS: The results support a role for MMPs in the development of choroidal neovascularization in AMD. The localization of MMP-2 and MMP-9 to the areas of new vessel formation and to the enveloping Bruch's-like membrane, respectively, suggests that MMP-2 and MMP-9 may be cooperatively involved in the progressive growth of choroidal neovascular membranes in AMD.  相似文献   

10.
Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases implicated in cancer invasion and metastasis. Gelatin zymography was performed on 84 human breast carcinomas and seven normal breast tissues. The precursor form of MMP-2 (72 kDa) was found in 11 (12%) samples, while its two activated forms, i.e. 62 kDa and 59 kDa, were found in three (6%) and 34 (40%) samples respectively. In contrast to MMP-2, most of the samples (52%) contained MMP-9 in its precursor form. Using ELISA, MMP-1 levels were found in 12% of the samples while MMP-3 levels were found in only 2% of the samples. Levels of MMP-2, -3 and -9 correlated inversely with numbers of nodal metastases. Neither MMP-2 nor -9 levels were significantly related to patient outcome. However, patients with high levels of a 50-kDa gelatinase band after zymography had a significantly better survival than patients with low levels. This species was never observed in normal breast tissue.  相似文献   

11.
Activation of human monocytes with lipopolysaccharide (LPS) results in the production of matrix metalloproteinases (MMPs) through a prostaglandin E2 (PGE2)-cAMP-dependent pathway. In this study, the early signaling events involved in this signal transduction pathway were evaluated. Pretreatment of human peripheral blood monocytes with herbimycin A, a tyrosine kinase inhibitor, or arachidonyl trifluoromethyl ketone (AACOCF3), a specific inhibitor of cytosolic phospholipase A2 (cPLA2) inhibited the induction of PGE2 by LPS. This resulted in the inhibition of protein expression of gelatinase B (MMP-9) and interstitial collagenase (MMP-1), two major MMPs secreted by activated monocytes. Addition of arachidonic acid (AA) reversed the inhibitory effect of herbimycin A or AACOCF3 on monocyte MMP production, indicating the importance of tyrosine phosphorylation and the involvement of cPLA2 at an early stage in the signal transduction pathway of MMPs. This finding was further supported by LPS-induced shift in cPLA2 migration and tyrosine phosphorylation based on immunoblotting and immunoprecipitation studies. These results provide evidence that tyrosine phosphorylation of cPLA2 is one of the initial steps needed for the LPS induced MMP production in human monocytes.  相似文献   

12.
PURPOSE: To identify matrix metalloproteinases (MMPs) released by ciliary smooth muscle cells in vitro and to determine whether MMP release is altered by exposure to prostaglandins (PGs). METHODS: Human ciliary smooth muscle cells were grown to confluence in monolayer cultures and treated with PGF2 alpha, 11-deoxy-PGE1, or PhXA85 (the nonesterified analogue of PhXA41) for 12 to 72 hours. The activity of MMP in the medium was assayed using gelatin and casein zymography. Identification of the specific MMP associated with each band was made by Western blot analysis. Band intensity, which reflects activity, was measured with a scanning laser densitometer. RESULTS: Three major bands appeared in the gelatin zymographs at positions corresponding to molecular weights of 62 kDa, 68 kDa, and 97 kDa. A single band at 50 kDa predominated in the casein zymograms. Substitution of EDTA for calcium and zinc in the development solution eliminated the appearance of these bands, indicating that they reflect MMP activity. Immunoblotting, using MMP-specific antibodies, confirmed that the three bands in the gelatin zymographs were MMP-1, MMP-2, and MMP-9, respectively; the single band in the casein zymographs was MMP-3. Treatment with 200 nM PGF2 alpha, 11-deoxy-PGE1, or PhXA85 for 72 hours increased the combined density scores for MMP-1 and MMP-2 by 37%, 64%, and 27%; the density scores for MMP-9 by 268%, 253%, and 125%; and the density scores for MMP-3 by 35%, 71%, and 22%, respectively. CONCLUSIONS: These results indicate that ciliary smooth muscle cells can secrete MMP-1, MMP-2, MMP-3, and MMP-9. In addition, exposure to PGF2 alpha, 11-deoxy-PGE1, or PhXA85 increases production of all four MMPs. These observations support the hypothesis that increased MMP production by ciliary muscle cells has a role in increasing uveoscleral outflow facility after topical PG administration.  相似文献   

13.
Matrix metalloproteinases (MMPs) are a family of enzymes that may be implicated in the pathogenesis of inflammatory demyelinating disorders such as multiple sclerosis. The present study investigated the expression of 92-kd gelatinase (MMP-9) and five other MMPs in sciatic nerve from Lewis rats with autoimmune experimental neuritis (EAN), an experimental model of the Guillain-Barré syndrome (GBS). Quantitative polymerase chain reaction analysis revealed an up-regulation of MMP-9 mRNA with peak levels concurrent with maximal disease severity. Increased mRNA expression was associated with enhanced enzyme activity, as detected by gelatin zymography. Immunohistochemically, MMP-9 could be localized primarily around blood vessels within the epineurium and endoneurium in diseased but not normal sciatic nerve. Among all other MMPs investigated, mRNA levels of matrilysin (MMP-7) were found to be up-regulated at the peak of the disorder, remaining at high levels throughout the clinical recovery phase of the disease. To apply these findings to human disease, sural nerve biopsies from GBS patients were examined. By using immunohistochemistry, positive immunoreactivity against MMP-9 and MMP-7 was noted and corroborated by demonstrating augmented mRNA expression in comparison with noninflammatory neuropathies. Furthermore, increased MMP-9 activity was detected by zymography. These findings indicate that 92-kd gelatinase and matrilysin are selectively up-regulated during EAN and expressed in nerves of GBS patients and thus may contribute to the pathogenesis of inflammatory demyelination of the peripheral nervous system.  相似文献   

14.
Matrix metalloproteinases (MMPs) have been reported to be involved in inflammatory disorders of the central nervous system (CNS). However, little is known about the role of MMPs in the pathogenesis of HTLV-I-associated myelopathy (HAM)/Tropical spastic paraparesis (TSP). To address this issue, we examined the tissue expression and localization of MMPs and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs) in the spinal cord lesions of HAM/TSP using immunohistochemistry. In addition, the blood and cerebrospinal fluid (CSF) levels of MMPs and TIMPs of the patients with HAM/TSP were determined using sandwich enzyme immunoassays (SIA) and gelatin zymography. Immunohistochemical studies revealed that collagen IV and decorin immunoreactivity on the basement membrane of CNS parenchymal vessels was partially disrupted where inflammatory mononuclear cells infiltrated in active-chronic lesions of HAM/TSP. In these lesions, MMP-2 (gelatinase A) was immunostained mainly on the surface of foamy macrophages and lymphocytes, whereas MMP-9 (gelatinase B) expression was positive in the intravascular and perivascular mononuclear cells but not on foamy macrophages. In contrast, inactive chronic lesions of the spinal cords of the HAM/TSP contained fewer MMP-2-positive or MMP-9-positive mononuclear cells than active-chronic lesions. Many parenchymal vessels had thickened vascular walls which showed increased immunoreactivity to decorin. SIA revealed that production levels of MMP-2 and MMP-9 in both blood and CSF were higher in the patients with HAM/TSP than those in non-inflammatory other neurological disease controls (ONDs). Using zymography, proMMP-9 was detected more frequently in the CSF of patients with HAM/TSP than those in ONDs. Taken together, our data indicate that MMP-2 and MMP-9 may play an important role in the blood-brain barrier breakdown and tissue remodeling in the CNS of HAM/TSP.  相似文献   

15.
In interstitial lung diseases, deposition of extracellular matrix (ECM) in alveoli and degradation of ECM lead to pulmonary structural remodeling. The changes in ECM and the localization of matrix metalloproteinases (MMPs) and a tissue inhibitor of metalloproteinases (TIMP) in the lung tissues of patients with bronchiolitis obliterans organizing pneumonia (BOOP) and idiopathic pulmonary fibrosis (IPF) were investigated. Immunohistochemical analysis for the detection of fibronectin, collagen-I, -III, and -IV, smooth muscle actin, MMP-1 (interstitial collagenase), -2 (gelatinase A), and -9 (gelatinase B), and TIMP-2, and in situ hybridization for the detection of MMP-9 mRNA were performed. Western blotting of lung tissue homogenates was performed for MMP-2 and MMP-9. The gelatinolytic activities of the homogenates were also determined using gelatin zymography. Fibronectin and collagen-I, -III, and -IV were detected in the intra-alveolar fibrosis in addition to the interstitium of these diseases. MMP-1, MMP-2, MMP-9, and TIMP-2 were detected in the regenerated epithelial cells covering intra-alveolar fibrosis. Myofibroblasts in intra-alveolar fibrosis in BOOP showed predominant reaction for MMPs, and they ultrastructurally appeared to be phagocytosing collagen fibrils, and those of IPF showed a predominant reaction for TIMP-2. New vascularization in intra-alveolar fibrosis was exclusively observed in cases of BOOP, and the endothelial cells were positive for MMP-2. Western blotting showed the existence of a latent form of MMP-9 and latent and active forms of MMP-2, and gelatin zymography revealed that the ratio of active/latent forms of MMP-2 in BOOP is significantly larger than that in the control lungs. Predominant MMPs in BOOP may constitute the mechanism of reversibility of fibrotic changes in this disease. TIMP-2 in myofibroblasts in IPF may contribute to the stable ECM deposition and the irreversible pulmonary structural remodeling.  相似文献   

16.
Porphyria cutanea tarda is characterized by severe connective tissue damage in sun-exposed skin. The regulated synthesis and degradation of the extracellular matrix by various matrix metalloproteinases (MMPs) determine its amount and composition within the skin. In this study, we therefore asked whether long-wave ultraviolet irradiation (340-450 nm) in conjunction with uroporphyrin I could modulate the synthesis of MMPs with substrate specificities for dermal (collagens I, III, V; proteoglycans) and basement membrane components (collagens IV, VII; fibronectin; laminin) and whether synthesis of the counteracting tissue inhibitor of metalloproteinases is also affected. After irradiation of uroporphyrin-pretreated fibroblasts, specific mRNAs of MMP-1 and MMP-3 increased concomitantly up to 2.7-fold compared with ultraviolet-irradiated cells and up to 10-fold compared with mock-irradiated or uroporphyrin I-treated controls. In contrast, mRNA levels of tissue inhibitor of metalloproteinases remained unaltered. Similar results were obtained by immunoprecipitation. Gelatin and casein zymography revealed increased proteolytic activity of MMP-2 and MMP-3 in blister fluids of patients with porphyria cutanea tarda, indicating that similar events may occur in vivo. Using deuterium oxide as enhancer and sodium azide as quencher of singlet oxygen, we could increase or reduce MMP synthesis, suggesting that singlet oxygen is the major intermediate in the upregulation of MMPs after irradiation of uroporphyrin-pretreated fibroblasts. Taken together, our results show that ultraviolet irradiation alone, and to a greater extent in conjunction with uroporphyrin I, results in an unbalanced synthesis of MMPs that may contribute to the destruction of the dermis and basement membrane, leading to blistering and accelerated photoaging in porphyria cutanea tarda patients.  相似文献   

17.
BACKGROUND and PURPOSE: Reperfusion disrupts cerebral capillaries, causing cerebral edema and hemorrhage. Middle cerebral artery occlusion (MCAO) induces the matrix-degrading metalloproteinases, but their role in capillary injury after reperfusion is unknown. Matrix metalloproteinases (MMPs) and tissue inhibitors to metalloproteinases (TIMPs) modulate capillary permeability. Therefore, we measured blood-brain barrier (BBB) permeability, brain water and electrolytes, MMPs, and TIMPs at multiple times after reperfusion. METHODS: Adult rats underwent MCAO for 2 hours by the suture method. Brain uptake of 14C-sucrose was measured from 3 hours to 14 days after reperfusion. Levels of MMPs and TIMPs were measured by zymography and reverse zymography, respectively, in contiguous tissues. Other rats had water and electrolytes measured at 3, 24, or 48 hours after reperfusion. Treatment with a synthetic MMP inhibitor, BB-1101, on BBB permeability and cerebral edema was studied. RESULTS: Brain sucrose uptake increased after 3 and 48 hours of reperfusion, with maximal opening at 48 hours and return to normal by 14 days. There was a correlation between the levels of gelatinase A at 3 hours and the sucrose uptake (P<0.05). Gelatinase A (MMP-2) was maximally increased at 5 days, and TIMP-2 was highest at 5 days. Gelatinase B and TIMP-1 were maximally elevated at 48 hours. The inhibitor of gelatinase B, TIMP-1, was also increased at 48 hours. Treatment with BB-1101 reduced BBB opening at 3 hours and brain edema at 24 hours, but neither was affected at 48 hours. CONCLUSIONS: The initial opening at 3 hours correlated with gelatinase A levels and was blocked by a synthetic MMP inhibitor. The delayed opening, which was associated with elevated levels of gelatinase B, failed to respond to the MMP inhibitor, suggesting different mechanisms of injury for the biphasic BBB injury.  相似文献   

18.
We recently reported that nitric oxide (NO), which is produced by chondrocytes treated with interleukin-1beta (IL-1), releases basic fibroblast growth factor (bFGF) stored in the matrix of articular chondrocytes. To clarify the mechanism of the IL-1-induced bFGF release, we investigated the production and gene expression of bFGF, matrix metalloproteinases (MMPs), syndecan 3, and inducible NO synthase (iNOS) by IL-1-treated rabbit articular chondrocytes. IL-1 stimulated not only the release of bFGF but also the production of it. Gelatin and casein zymography revealed that IL-1 stimulated the production of not only MMP-9 but also MMP-3. The increase in the production of these MMPs preceded the IL-1-stimulated bFGF release. An MMP inhibitor partially suppressed the release of bFGF, indicating that matrix degradation is at least partially involved in the IL-1-stimulated bFGF release even if increased production of bFGF is related to the release. IL-1 sequentially stimulated mRNA expression of iNOS, membrane type 1-MMP, MMP-9 and -3, and bFGF, in that order. NG-Monomethyl-L-arginine, an inhibitor of NO production, inhibited gene expression of MMP-9 and bFGF. These findings suggest that elevation of the NO level via iNOS mRNA expression stimulated by IL-1 mediates gene expression and production of MMPs and bFGF, resulting in the release of bFGF, and also reveal molecular mechanisms implicating the degradation of articular cartilage followed by angiogenesis in the synovium in arthritic joints.  相似文献   

19.
In order to investigate the regulatory role of only one endometrial cell type on trophoblastic invasion, we explored the effects of culture medium conditioned by in vitro decidualised stromal cells (DCM) and of insulin-like growth factor binding protein-1 (IGFBP-1, the main secretory product of decidual cells) on the trophoblastic secretion of gelatinases and tissue inhibitor of metalloproteinases (TIMP-1). First trimester cytotrophoblastic cells (CTB) were obtained from abortions and cultured in vitro in presence or absence of DCM or IGFBP-1. Secreted gelatinases were analysed in the culture supernatants by zymography and by measurements of the total gelatinolytic activity. Tissue inhibitor of metalloproteinases (TIMP-1) was measured by a commercially available immunoassay. DCM inhibited the total gelatinolytic activity of CTB but increased trophoblastic MMP-9 and TIMP-1. In contrast, IGFBP-1 increased the total gelatinolytic activity and TIMP-1 and had no effect on MMP-2 and MMP-9. We conclude that a factor secreted by decidual cells (possibly TGFbeta) inhibits the total gelatinolytic activity of trophoblast by increasing TIMP-1 but other factors, as yet unidentified, increase MMP-2 and MMP-9 to an extent which does not shift the equilibrium between the gelatinases and TIMP-1 in favour of the gelatinases. In contrast to DCM, IGFBP-1 increases the total gelatinolytic activity probably by stimulating another gelatinase (stromelysin-1?) as MMP-2 and MMP 9 are unchanged by IGFBP-1. The possibility of an integrin mediated effect of IGFBP-1 on CTB is discussed.  相似文献   

20.
Induction of the 92-kDa gelatinase (MMP-9) gene expression is associated with macrophage differentiation. In this study, we explored the regulatory mechanisms underlying this differentiation-associated MMP-9 gene expression in human HL-60 myeloid leukemia cells and human peripheral blood monocytes. Phorbol 12-myristate 13-acetate (PMA) markedly induced MMP-9 gene expression in HL-60 cells; the induction closely paralleled the timing and extent of PMA-induced cell adhesion and spreading, a hallmark of macrophage differentiation. Similarly, treatment with PMA or macrophage-colony stimulating factor stimulated adherence and spreading of blood monocytes with a concurrent 7- or 5-fold increase in MMP-9 production, respectively. In protein kinase C (PKC)-beta-deficient HL-60 variant cells (HL-525), PMA failed to induce cell adhesion and MMP-9 gene expression. Transfecting HL-525 cells with a PKC-beta expression plasmid restored PKC-beta levels and PMA inducibility of cell adhesion and spreading as well as MMP-9 gene expression. Induction of cell adhesion and MMP-9 gene expression in HL-60 cells and blood monocytes was strongly inhibited by neutralizing monoclonal antibodies to fibronectin (FN) and its receptor alpha5 beta1 integrin. HL-525 cells, which constitutively display high levels of surface alpha5 beta1 integrin, adhered and spread on immobilized FN with concomitant induction of MMP-9 gene expression. Cytochalasins B and D were each a potent inhibitor of MMP-9 production. Our results suggest that alpha5 beta1 integrin-mediated interaction of immature hematopoietic cells with FN plays a critical role in modulating matrix-degrading activities during macrophage differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号