首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High resolution electrospray ionization tandem mass spectrometry (HR-ESI–MS/MS) was used to analyze cardiolipins (Ptd2Gro) including their plasmalogen forms from three species of the anaerobic beer-spoilage bacterial genus Pectinatus. Cardiolipins including their plasmalogens were analyzed by HR-ESI–MS/MS on Orbitrap and almost 100 cardiolipins (i.e. tetra-acyl—Ptd2Gro, plasmenyl-tri-acyl—PlsPtd2Gro, and di-plasmenyl-di-acyl—Pls2Ptd2Gro) of three classes were identified. The structures of the molecular species that consist of various regioisomers and structurally similar compounds were revealed in detail. The high resolution mass spectrometry allowed the unambiguous structural assignment of Ptd2Gro, PlsPtd2Gro, and Pls2Ptd2Gro in the three species of Pectinatus, which contain predominantly odd numbered fatty acids.  相似文献   

2.
Here we present a workflow for in‐depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MSALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL‐20, a phospholipid‐enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In‐depth lipidomic analysis by MS/MSALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MSALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short‐chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MSALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. Practical applications : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MSALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk‐based supplement used for infant formula. A workflow for milk lipid analysis based on combined gas chromatography and high‐resolution shotgun lipidomics. In‐depth structural characterization and quantification of molecular lipid species in milk and milk products.  相似文献   

3.
Small clinical studies have shown that oral treatment with the plant alkaloid berberine (BBR) reduces blood glucose levels similar to that of metformin and have promoted its use as a novel anti‐diabetic therapy. However, in vitro studies have shown that high concentrations of BBR potently inhibit cell proliferation through inhibition of mitochondrial function. Cardiolipin (Ptd2Gro) is a key phospholipid required for regulating mitochondrial bioenergetic function. We examined if BBR inhibited oxygen consumption rate in H9c2 cardiac myocytes through alteration in Ptd2Gro metabolism. Treatment of H9c2 cells with BBR resulted in a rapid (within minutes) concentration‐dependent decrease in the oxygen consumption rate (OCR) as determined using a Seahorse XF24 analyzer. Concentrations of BBR as low as 1 µM were effective in inhibiting OCR. In addition, all concentrations of BBR inhibited the fatty acid‐mediated increase in OCR that was observed in untreated cells. Treatment of H9c2 cells with up to 25 µM BBR for 24 h markedly reduced [3H]thymidine incorporation into cells but did not alter the pool size of Ptd2Gro. In contrast, 12.5 µM BBR increased [1‐14C]palmitate incorporation into Ptd2Gro and 12.5 µM and 25 µM BBR reduced [1‐14C]oleate incorporation into Ptd2Gro. Protein kinase C delta (PKCδ) activation through its increased membrane association is known to alter Ptd2Gro distribution within mitochondria. BBR treatment resulted in a decrease in membrane‐associated PKCδ and attenuated the palmitate‐mediated increase in PKCδ membrane‐association. Thus, BBR treatment of H9c2 cardiac myocytes inhibits cellular OCR independent of alteration in Ptd2Gro levels.  相似文献   

4.
The development of enabling mass spectrometry platforms for the quantification of diverse lipid species in human urine is of paramount importance for understanding metabolic homeostasis in normal and pathophysiological conditions. Urine represents a non‐invasive biofluid that can capture distinct differences in an individual's physiological status. However, currently there is a lack of quantitative workflows to engage in high throughput lipidomic analysis. This study describes the development of a MS/MSALL shotgun lipidomic workflow and a micro liquid chromatography–high resolution tandem mass spectrometry (LC–MS/MS) workflow for urine structural and mediator lipid analysis, respectively. This workflow was deployed to understand biofluid sample handling and collection, extraction efficiency, and natural human variation over time. Utilization of 0.5 mL of urine for structural lipidomic analysis resulted in reproducible quantification of more than 600 lipid molecular species from over 20 lipid classes. Analysis of 1 mL of urine routinely quantified in excess of 55 mediator lipid metabolites comprised of octadecanoids, eicosanoids, and docosanoids generated by lipoxygenase, cyclooxygenase, and cytochrome P450 activities. In summary, the high‐throughput functional lipidomics workflow described in this study demonstrates an impressive robustness and reproducibility that can be utilized for population health and precision medicine applications.  相似文献   

5.
The lipidomes of Clostridium fallax and Clostridium cadaveris were studied using thin-layer chromatography (TLC) and normal phase liquid chromatography/mass spectrometry (NPLC/MS). Both species contain diradylglycerol (DRG), monohexosyldiradylglycerol (MHDRG), monohexosyl monoacylglycerol (MHMAG), phosphatidylglycerol (PtdGro), and phosphatidylethanolamine (PtdEtn). DRG, MHDRG, PtdEtn, and PtdGro are present in both diacyl and alk-1-enyl acyl (plasmalogen) forms. Both species contain cardiolipin (Ptd2Gro), which is present in tetraacyl, monoalkenyl-triacyl, and dialkenyl-diacyl forms. Both species contain small amounts of phosphatidylcholine (PtdCho). The presence of octadecadienoic (18:2) acyl chains in some PtdCho species indicates that they arise from the medium because no 18:2 is seen in the other lipids and clostridia generally lack the capacity to synthesize polyunsaturated fatty acids. The major lipidomic differences between these two species are that C. fallax contains a glycerolacetal of plasmenylethanolamine while C. cadaveris contains an ethanolamine-phosphate-modified diacylglycerol. The significance of these lipid compositions is discussed.  相似文献   

6.
Graft copolymerization of ε‐caprolactone (CL) and lactic acid (LA) onto cellulose diacetate (CDA) at the residual hydroxyl positions was conducted to obtain thermoplastic CDA. The effects of the reaction temperature and time and the CL/LA molar ratio in the feed on the progress of the graft copolymerization were investigated. The molecular weight of CDA was increased by this graft copolymerization. The oxycaproyl and lactyl molar substitutions (MSCL and MSLA, respectively) in grafted CDA (g‐CDA) were determined through 1H‐NMR spectral analysis. These MS values were controllable by changing the reaction conditions adequately. The flow temperature and melt viscosity of g‐CDA decreased with an increase in the total substitution of MSCL and MSLA, and transparent polymer sheets could be obtained from the resulting g‐CDA by hot pressing at around 200°C without adding any plasticizer. The mechanical properties of the molded g‐CDA samples varied widely, depending on the different combinations of the MSCL and MSLA values; the g‐CDA sheets became elastic when the MSCL was larger than the MSLA, and their tensile strengths were enhanced as the MSLA was increased. It was thus found that CDA was successfully plasticized by this graft copolymerization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2621–2628, 2002  相似文献   

7.
Ten diacylglycerols (DAG) and 74 triacylglycerols (TAG) in the seed oil of Physaria fendleri were recently identified by high‐performance liquid chromatography (HPLC) and mass spectrometry (MS). These acylglycerols (AG) were quantified by HPLC with evaporative light scattering detector and electrospray ionization mass spectrometry of the lithium adducts of the AG in the HPLC fractions of lesquerella oil. The MS1 ion signal intensities of molecular ions [M + Li]+ in HPLC fractions of an HPLC peak were used to estimate the ratios of AG in the HPLC peak. The ratios of TAG with the same mass in HPLC fractions were estimated by the ratios of the sums of MS2 ion signal intensities from the neutral loss of the three fatty acids [M + Li ? FA]+. The ratio of DAG with the same mass were estimated by the ratio of the sums of two MS2 ion signal intensities [M + Li ? FA]+ and [FA + Li]+ from the two different FA of a DAG. We have estimated the contents of ten molecular species of DAG and 74 molecular species of TAG in P. fendleri oil using this new method. The content of ten DAG combined was about 1 % and 74 TAG was about 98 %. The contents of DAG in decreasing order were: LsLs (0.25 %), LsLn (0.25 %), LsO (0.24 %), and LsL (0.11 %); and the contents of TAG in decreasing order were: LsLsO (31.3 %), LsLsLn (24.9 %), LsLsL (15.8 %), LsL‐OH20:2 (4.3 %), LsO‐OH20:2 (2.8 %), and LsLn‐OH20:2 (2.5 %).  相似文献   

8.
Nathan L. Ta  Thomas N. Seyfried 《Lipids》2015,50(12):1167-1184
Glucose and glutamine are essential energy metabolites for brain tumor growth and survival under both normoxic and hypoxic conditions. Both metabolites can contribute their carbons to lipid biosynthesis. We used uniformly labeled [14C]‐U‐d ‐glucose and [14C]‐U‐l ‐glutamine to examine the profile of de novo lipid biosynthesis in the VM‐M3 murine glioblastoma cells. The major lipids synthesized included phosphatidylcholine (PtdCho), phosphatidylethanolamine (EtnGpl), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer), sphingomyelin (CerP Cho), bis(monoacylglycero)phosphate (BMP)/phosphatidic acid (PtdOH), cholesterol (C), cardiolipin (Ptd2Gro), and gangliosides. Endogenous lipid synthesis, using either glucose or glutamine, was greater in media without fetal bovine serum (FBS) than in media containing 10 % FBS under normoxia. De novo lipid synthesis was greater using glucose carbons than glutamine carbons under normoxia. The reverse was observed for most lipids under hypoxia suggesting an attenuation of glucose entering the TCA cycle. Lactate was produced largely from glucose carbons with minimal lactate derived from glutamine under either normoxia or hypoxia. Accumulation of triacylglycerols (TAG), containing mostly saturated and mono‐unsaturated fatty acids, was observed under hypoxia using carbons from either glucose or glutamine. The data show that the incorporation of labeled glucose and glutamine into most synthesized lipids was dependent on the type of growth environment, and that the VM‐M3 glioblastoma cells could acquire lipids, especially cholesterol, from the external environment for growth and proliferation.  相似文献   

9.
A high membrane potential across the mitochondrial inner membrane leads to the production of the reactive oxygen species (ROS) implicated in aging and age‐related diseases. A prototypical drug for the correction of this type of mitochondrial dysfunction is presented. MitoDNP‐SUM accumulates in mitochondria in response to the membrane potential due to its mitochondria‐targeting alkyltriphenylphosphonium (TPP) cation and is uncaged by endogenous hydrogen peroxide to release the mitochondrial uncoupler, 2,4‐dinitrophenol (DNP). DNP is known to reduce the high membrane potential responsible for the production of ROS. The approach potentially represents a general method for the delivery of drugs to the mitochondrial matrix through mitochondria targeting and H2O2‐induced uncaging.  相似文献   

10.
Atlantic salmon (Salmo salar) (90 g) were fed four different diets for 21 weeks (final weight 344 g). The levels of n-3 highly unsaturated fatty acids (HUFA) ranged from 11% of the total fatty acids (FA) in the low n-3 diet to 21% in the intermediate n-3 diet, to 55 and 58% in the high n-3 diets. The high n-3 diets were enriched with either docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA). Increasing dietary levels of n-3 HUFA led to increasing percentages (from 31 to 52%) of these FA in liver lipids. The group fed the highest level of DHA had higher expressions of peroxisome proliferator-activated receptor (PPAR) β and the FA β-oxidation genes acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase (CPT)-II, compared to the low n-3 groups. The high n-3 groups had reduced activity of mitochondrial cytochrome c oxidase and β-oxidation capacity, together with increased activities of superoxide dismutase (SOD) and caspase-3 activities. In the group fed the highest level of n-3 HUFA, decreased percentages of major phospholipids (PL) in the mitochondrial and microsomal membranes of the liver were also apparent. The percentage of mitochondrial cardiolipin (Ptd2Gro) was 3.1 in the highest n-3 group compared to 6.6 in the intermediate group. These data clearly show an increased incidence of oxidative stress in the liver of fish fed the high n-3 diets.  相似文献   

11.
Two valence states of tin atoms (namely, the doubly charged Sn2+ and quadruply charged Sn4+ states) in the structure of the (As2Se3)0.4(SnSe)0.3(GeSe)0.3 glasses are identified by 119Sn Mössbauer spectroscopy. It is demonstrated that the concentration ratio of the doubly charged Sn2+ and quadruply charged Sn4+ states in the glass of this composition depends on the rate of quenching of the melt and on the initial temperature of the melt before quenching. The optical band gap and the activation energy for electrical conduction of the studied glass do not depend on the concentration ratio of the Sn2+ and Sn4+ ions. This behavior of the optical band gap and the activation energy is explained within the model according to which the structure of the glasses under investigation is built up of the structural units AsS3/2, As2/2Se4/4, GeSe4/2, SnSe4/2, and SnSe3/3, which correspond to the compounds AsSe3, AsSe, GeSe2, SnSe2, and SnSe, respectively.  相似文献   

12.
An amphiphilic graft copolymer, hydroxypropylcellulose‐graft‐poly(ε‐caprolactone) (HPC‐g‐PCL), was synthesized by bulk polymerization without a catalyst and characterized with one‐dimensional and two‐dimensional NMR spectroscopy. Molar substitution of ε‐caprolactone on HPC (MSCL) was estimated by both gravimetry and 1H‐NMR, and the gravimetric method was considered suitable for MSCL determination. Heterogeneity in the HPC‐g‐PCL film was suggested by a microscopic study, and the existence of PCL‐rich crystalline regions was confirmed by the results of X‐ray diffraction and differential scanning calorimetry (DSC). The double endotherm observed in the DSC scans of HPC‐g‐PCL was associated with the different molecular weight fractions in the copolymer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 718–727, 2003  相似文献   

13.
The ratios of regioisomers of 72 molecular species of triacylglycerols (TAG) in lesquerella oil were estimated using the electrospray ionization mass spectrometry of the lithium adducts of TAG in the HPLC fractions of lesquerella oil. The ratios of ion signal intensities (or relative abundances) of the fragment ions from the neutral losses of fatty acids (FA) as α‐lactones at the sn‐2 position (MS3) of the molecular species of TAG were used as the ratios of the regioisomers. The order of the preference of FA incorporation at the sn‐2 position of the molecular species of TAG in lesquerella was as: normal FA > OH18 (monohydroxy FA with 18 carbon atoms) > diOH18 > OH20 > diOH20, while in castor was as: normal FA > OH18 > OH20 > diOH18 > triOH18. Elongation (from C18 to C20) was more effective than hydroxylation in lesquerella to incorporate hydroxy FA at the sn‐1/3 positions. The block of elongation in lesquerella may be used to increase the content of hydroxy FA, e.g., ricinoleate, at the sn‐2 position of TAG and to produce triricinolein (or castor oil) for industrial uses. The content of normal FA at the sn‐2 position was about 95 %, mainly oleate (38 %), linolenate (31 %) and linoleate (23 %). This high normal FA content (95 %) at the sn‐2 position was a big space for the replacement of ricinoleate to increase the hydroxy FA content in lesquerella oil. The content of hydroxy FA at the sn‐1/3 positions was 91 % mainly lesquerolic acid (85 %) and the content of normal FA was 6.7 % at the sn‐1/3 position in lesquerella oil.  相似文献   

14.
In this study, hexagonal and cubic lyotropic liquid crystals (LLC) were constructed in Brij 97-Tween 40 (MS82, MS64 and MS46)/OLA/H2O systems to encapsulate curcumin. MS82, MS64, and MS46 indicated that the mass ratio of Brij 97/Tween 40 was 8/2, 6/4, and 4/6. The microstructure of curcumin LLC was studied using small angle X-ray scattering (SAXS). Phase diagrams showed that the increase of MS reduced the phase transition temperature (TC). Particularly, the TC of sample C1Cur [Brij 97-Tween 40 (MS46)/OLA/H2O = 50.0/2.8/47.2] and C2Cur [Brij 97-Tween 40 (MS46)/OLA/H2O = 50.0/25.0/25.0] was 37.6 and 35.4 °C, respectively, close to the temperature of the human body. Thus, the shear rheology and SAXS were used to study the structural changes of samples C1Cur and C2Cur with temperature. The moduli values of samples C1Cur and C2Cur decreased with the increase of temperature, showing various structural strengths. in vitro release experiment was used to study the drug release kinetics. The release of curcumin from LLC conformed to the concentration diffusion model. Due to a similar aS, the release of curcumin from samples A1Cur, B1Cur, and C1Cur (Brij 97-Tween 40/OLA/H2O = 50.0/2.8/47.2 and the MS is MS82, MS64, and MS46) showed a similar release behavior under different MS. The release behavior of curcumin was related to the structure of samples C1Cur and C2Cur at different temperatures. Curcumin exhibited the fastest release rate when the samples behaved as the micellar phase.  相似文献   

15.
The mitochondrial permeability transition pore (mtPTP) is a Ca2+‐requiring mega‐channel which, under pathological conditions, leads to the deregulated release of Ca2+ and mitochondrial dysfunction, ultimately resulting in cell death. Although the mtPTP is a potential therapeutic target for many human pathologies, its potential as a drug target is currently unrealized. Herein we describe an optimization effort initiated around hit 1 , 5‐(3‐hydroxyphenyl)‐N‐(3,4,5‐trimethoxyphenyl)isoxazole‐3‐carboxamide, which was found to possess promising inhibitory activity against mitochondrial swelling (EC50<0.39 μM ) and showed no interference on the inner mitochondrial membrane potential (rhodamine 123 uptake EC50>100 μM ). This enabled the construction of a series of picomolar mtPTP inhibitors that also potently increase the calcium retention capacity of the mitochondria. Finally, the therapeutic potential and in vivo efficacy of one of the most potent analogues, N‐(3‐chloro‐2‐methylphenyl)‐5‐(4‐fluoro‐3‐hydroxyphenyl)isoxazole‐3‐carboxamide ( 60 ), was validated in a biologically relevant zebrafish model of collagen VI congenital muscular dystrophies.  相似文献   

16.
The two-electron exchange between neutral and doubly ionized U tin centers in the partially compensated Pb0.96Sn0.02Na0.01Tl0.01S hole solid solutions in the temperature range of 80–900 K and in the partially compensated Pb0.965Sn0.015Na0.01Tl0.01Se hole solid solutions in the temperature range of 80–600 K was studied by 119mm Sn(119m Sn) Mössbauer spectroscopy. The activation energy of this process for the Pb0.96Sn0.02Na0.01Tl0.01S solid solutions is comparable with the depth of the tin energy levels in the PbS band gap and amounts to 0.11(2) eV, while in the Pb0.965Sn0.015Na0.01Tl0.01Se solid solutions it is comparable with the correlation energy of the donor U tin centers in PbSe and amounts to 0.05(1) eV. It is established that the exchange is implemented by the simultaneous transfer of two electrons with the valence band states involved. In the glass-like (As2Se3)0.3(GeSe)0.6(SnSe)0.1 alloy containing quadruply charged six-coordinated tin (singly ionized donor center) and doubly charged three-coordinated tin (singly ionized acceptor center), no traces of the electronic exchange between differently charged tin states was observed up to a temperature of 480 K, which is explained by the fact that the doubly charged and quadruply charged tin centers are in different coordination states.  相似文献   

17.
The bioplastic poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), was isolated from a bioreactor using mixed microbial consortia fed volatile fatty acids (VFA), from fermented dairy manure, as the carbon source. The molar fraction of 3‐hydroxyvalerate (3HV) amounted to 0.33 mol mol?1 for two isolated PHBV samples as determined by GC‐MS and 1H‐NMR spectroscopy. The chemical, thermal, and mechanical properties were determined. The PHBVs had relatively high Mw (~790,000 g mol?1). Only a single glass transition temperature (Tg) and melting point (Tm) were observed. Isolated PHBVs exhibited good flexibility and elongation to break as compared with commercial PHBVs with lower HV. The diad and triad sequence distributions of the monomeric units were determined by 13C‐NMR spectroscopy and followed Bernoullian statistics suggesting that the PHBVs were random. The PHBV sequence distribution was also characterized by electrospray ionization‐mass spectrometry (ESI‐MSn) after partial alkaline hydrolysis to oligomers showing a random 3HV distribution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40333.  相似文献   

18.
To improve the performance of nanofiltration (NF) membranes, a chiral mesogenic compound, a positively charged compound, and a negatively charged compound were grafted to chitosan, respectively. Series of novel composite NF membranes were prepared by over‐coating the polysulfone ultrafiltration membrane with the mixture of chitosan and modified chitosan. The chiral mesogenic compound, the positively charged compound, the negatively compound and their chitosan derivatives were characterized by infrared spectrophotometer, differential scanning calorimetry, polarized optical microscope; the structure of the membrane was characterized by scanning electron microscopy. The performance of composite NF membranes was strictly related to the novel compounds grafted to chitosan and its composition. The rejection reached the maximum of 95.7% for CaCl2 with P2‐7 composite NF membrane, corresponding flux was 3155 Lm?2h?1. The rejection reached the maximum of 93% for Na2SO4 with P3‐5 composite NF membrane, corresponding flux was 3879 Lm?2h?1. Comparing with conventional NF membranes, the membranes were used in low pressure with high flux, especially for the separation of high‐valence ions from solution. The membranes were typical charged NF membranes. POLYM. ENG. SCI., 57:22–30, 2017. © 2016 Society of Plastics Engineers  相似文献   

19.
Generation of monomobile molecular standards by electrospray (ES) followed by classification in a differential mobility analyzer (DMA) fails at diameters above ~2 nm because many clusters in different charge states z crowd in a narrow mobility range. Use of a second DMA (DMA2) in series (tandem) with DMA1 is very helpful because, unexpectedly, many multiply charged ions selected in DMA1 undergo spontaneous transitions, appearing as pure species at different mobilities in DMA2. Remarkably, for salt clusters of composition (CA) n (C+ ) z carrying z elementary charges and n neutral ion pairs, (i) ion evaporation (CA) n (C+ ) z →(CA) n –1(C+ ) z– 1+(CA)C+ and (ii) neutral evaporation transitions (CA) n (C+ ) z →(CA) n –1(C+ ) z+CA affect a substantial fraction of the clusters. Neutral evaporation (fueled by the Kelvin effect) is effective in isolating singly charged clusters, yielding mobility standards easily exceeding 2 nm. Ion evaporation (fueled by large electric fields) produces even larger well-resolved standards. Singly charged clusters of up to 2.5 nm rising in isolation result from metastable doubly charged parent ions (z = 2→1 transition). Isolated doubly charged ions of up to 3.5 nm arise from the z = 3→2 transition, but are harder to resolve from the products of higher initial charge states. We report tandem DMA measurements for electrosprayed nanodrops of two ionic liquids: EMI-Im and EMI-Methide, both based on the small cation EMI+ (1-Ethyl-3-methylimidazolium+) and two relatively large anions: Im? = (CF3SO2)2N?; Methide? = (CF3SO2)3C?. Some exploration on the effect of actively reducing the charge on the clusters as they pass between both analyzers is also included.

Copyright 2013 American Association for Aerosol Research  相似文献   

20.
Sphingomyelin (ceramide‐phosphocholine, CerPCho) is a common sphingolipid in mammalian cells and is composed of phosphorylcholine and ceramide as polar and hydrophobic components, respectively. In this study, a qualitative liquid chromatography‐electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS/MS) analysis is proposed in which CerPCho structures were assigned based on product ion spectra corresponding to sphingosylphosphorylcholine and N‐acyl moieties. From MS/MS/MS analysis of CerPCho, we observed product ion spectra of the N‐acyl fatty acids as [RCO2]? ions as well as sphingosylphosphorylcholine. A calibration curve for CerPCho was constructed using two stable isotopically labeled CerPCho species and then used to quantify the CerPCho species in HeLa cells as a proof‐of‐principle study. The present study proposes an accurate method for quantifying and assigning structures to each CerPCho species in crude biologic samples by LC–ESI–MS/MS/MS analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号