首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Powders of spinel Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were successfully synthesized by solid-state method. The structure and properties of Li4Ti5−xVxO12 (0 ≤ x ≤ 0.3) were examined by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electronic microscope (SEM), galvanostatic charge–discharge test and cyclic voltammetry (CV). XRD shows that the V5+ can partially replace Ti4+ and Li+ in the spinel and the doping V5+ ion does almost not affect the lattice parameter of Li4Ti5O12. Raman spectra indicate that the Raman bands corresponding to the Li–O and Ti–O vibrations have a blue shift due to the doping vanadium ions, respectively. SEM exhibits that Li4Ti5−xVxO12 (0.05 ≤ x ≤ 0.25) samples have a relative uniform morphology with narrow size distribution. Charge–discharge test reveals that Li4Ti4.95V0.05O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 1.0 and 2.0 V; Li4Ti4.9V0.1O12 has the highest initial discharge capacity and cycling performance among all samples cycled between 0.0 and 2.0 V or between 0.5 and 2.0 V. This excellent cycling capability is mainly due to the doping vanadium. CV reveals that electrolyte starts to decompose irreversibly below 1.0 V, and SEI film of Li4Ti5O12 was formed at 0.7 V in the first discharge process; the Li4Ti4.9V0.1O12 sample has a good reversibility and its structure is very advantageous for the transportation of lithium-ions.  相似文献   

2.
Li–Ni oxide mixtures with high lithium content are considered to be an alternative cathode material for molten carbonate fuel cells (MCFCs). The electrochemical behaviour of Li0.4Ni0.6O samples has been investigated in a Li–K carbonate melt at 650 °C by electrochemical impedance spectroscopy as a function of immersion time and O2 and CO2 partial pressure. The impedance spectra have been interpreted using a transmission line model that includes contact impedance between reactive particles. The Li0.4Ni0.6O powder particles show structural changes due to high lithium leakage and low nickel dissolution from the reactive surface to the electrolyte during the first 100 h of immersion. After this time, the structure seems to be stable. The partial pressures of O2 and CO2 affect the processes of oxygen reduction and Li–Ni oxide oxidation. X-ray diffraction and chemical analysis performed on samples before and after the electrochemical tests have confirmed that the lithium content decreases. SEM observations reveal a reduction in grain size after the electrochemical tests.  相似文献   

3.
LiNi0.5Co0.5O2 cathode materials were synthesized by a solid-state reaction method at 800 °C using Li2CO3, LiOH·H2O; NiO, NiCO3; CoCO3, or Co3O4 as the sources of Li, Ni, and Co, respectively. The electrochemical properties of the synthesized samples were then investigated. The structure of the synthesized LiNi0.5Co0.5O2 was analyzed, and the microstructures of the samples were observed. The curves of voltage vs. x in LixNi0.5Co0.5O2 for first charge–discharge and intercalated and deintercalated Li quantity Δx were studied. Destruction of unstable 3b sites and phase transitions were discussed from the first and second charge–discharge curves of voltage vs. x in LixNi0.5Co0.5O2. The LiNi0.5Co0.5O2 sample synthesized from Li2CO3, NiCO3 and Co3O4 has the largest first discharge capacity (142 mAh/g). The LiNi0.5Co0.5O2 sample synthesized from Li2CO3, NiO and Co3O4 has a relatively large first discharge capacity (141 mAh/g) and the smallest capacity deterioration rate (4.6 mAh/g/cycle).  相似文献   

4.
With the aim of achieving a high-performance 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 material, a series of 0.5Li2MnO3·0.5LiMn x Ni y Fe(1−xy)O2 (0.3 ≤ x ≤ 0.5, 0.4 ≤ y ≤ 0.5) samples with low Fe content was synthesized via coprecipitation of carbonates. Its crystal structure and electrochemical performance were characterized by means of powder X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, galvanostatic charge/discharge testing, cyclic voltammetry, and electrochemical impedance spectra. Rietveld refinements with a model integrating R [`3] \overline{3} m and Fm [`3] \overline{3} m indicate that a low concentration of Fe incorporated in 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 decrease a disordered cubic domain of the composite structure. The preferential distribution of Fe in cubic rock-salt contributes to an unimaginable decrease of c-axis parameter of the predominant layered structure as the Fe content increases. Moreover, including Fe as a dopant can kinetically improve crystallization and also change the ratio of Mn3+/Mn4+ and Ni3+/Ni2+. As a result, 0.5Li2MnO3·0.5LiMn0.4Ni0.5Fe0.1O2 exhibits lower Warburg impedance and higher reversible capacity than the undoped material.  相似文献   

5.
Solid oxide electrolytes with high Li ion conductivity and mechanical stability are vital for all solid-state lithium ion batteries. The perovskite material LixLa0.557TiO3 with various initial Li (0.303 ≤ x ≤ 0.370) is synthesized by traditional solid-state reaction. The cubic and tetragonal structures are prepared with fast and slow cooling, respectively. The results reveal that the Li ion conductivity of the cubic structure is higher. In fact, the bulk conductivity of 1.65 × 10?3 S cm?1 is obtained at room temperature for x = 0.350. The crystal structure is not affected by the Li2O quantity. In addition, Young's modulus, hardness, and fracture toughness are determined with indentation method for both structures. The Young's modulus increases with increasing Li2O. However, hardness and fracture toughness keep a relatively stable value independent of Li2O quantity.  相似文献   

6.
Lithium borate (LB) glasses and crystals with x = Li/(Li + B) = mole fraction of Li2O of 0.2–0.5 have been synthesized by the quenching method. The thermodynamics of these materials were analyzed by high-temperature oxide melt solution calorimetry. The formation enthalpies from oxides of glasses range from −33.6 to −67.3 kJ/mol and those of crystals range from −42.1 to −77.4 kJ/mol, where compositions are given on the basis of one mole of (Li2O + B2O3). The formation enthalpies of both glasses and crystals become more negative with increasing Li2O mole fraction up to 0.5. The enthalpies of formation of glasses can be fit over the entire composition range (0 < x < 1) by a quadratic polynomial). The vitrification enthalpies were derived for x = 0.2 to 0.5 and ranged from 8.5 to 17.6 kJ/mol. The main factors controlling energetics are the strongly exothermic acid–base reaction between the network former (B2O3) and the network modifier (Li2O) and the formation of tetrahedrally coordinated boron in the glasses and crystals.  相似文献   

7.
Solid electrolytes with high lithium ionic conductivity and outstanding mechanical stability are essential for all solid‐state lithium ion batteries. Perovskite LixLa0.5TiO3 is one of the most promising as solid electrolytes candidates. LixLa0.5TiO3 with various initial Li2O (0.5≤x≤0.569) is synthesized by traditional solid‐state reaction at high temperatures. The crystal structure is not remarkably affected by the Li2O quantity, yet higher porosity is obtained as a result of excess Li2O. The Young's modulus, hardness, and fracture toughness are evaluated with indentation method. The Young's modulus increases from 72 to 148 GPa with increasing Li2O, which means that a small variation of Li quantity in LixLa0.5TiO3 results in over a 100% change in Young's modulus. However, the fracture toughness exhibits an opposite trend with that of the Young's modulus. The high Young's modulus and fracture toughness could guarantee the structural integrity during cycle operations.  相似文献   

8.
It is known that the addition of Li2O to 33.3BaO-66.7SiO2 glass, whose composition is the same as BaSi2O5, promotes crystallization of BaSi2O5. In this study, in order to clarify the effect of a smaller amount of Li2O, xLi2O-(30-x)BaO-70SiO2[mol%] (x = 0, 0.2, 0.5) glasses were prepared. The main crystalline phases in the heat treatments near the maximum crystallization peak temperature, were high-BaSi2O5 and low-BaSi2O5 which transformed from high-BaSi2O5. It is found that the introduction of only 0.2 mol% and 0.5 mol% Li2O significantly changes the crystallization behavior. In the composition without Li2O, only high-BaSi2O5 was formed after heat treatment even for 24 h. For compositions containing Li2O, low-BaSi2O5 was formed within 1 h of heat treatment. In these compositions, it is found that the addition of Li2O enhances phase separation in the early stage of heat treatment, resulting in the formation of Si-rich droplet phases and Ba-rich phases. The composition of the Ba rich glass phase would be close to the stoichiometric composition of BaSi2O5, suggesting a significant change in crystallization behavior.  相似文献   

9.
Sulface modification of lithium was carried out using the chemical reaction of the native film with acids (HF, H3PO4, HI, HCl) dissolved in propylene carbonate (PC). The chemical composition change of the lithium surface was detected using X-ray photoelectron spectroscopy. The electrodeposition of lithium on the as-received lithium or the modified lithium was conducted in PC containing 1.0 mol dm–3 LiClO4 or LiPF6 under galvanostatic conditions. The morphology of electrodeposited lithium particles was observed with scanning electron microscopy. The lithium dendrites were observed when lithium was deposited on the as-received lithium in both electrolytes. Moreover the dendrites were also formed on the lithium surface modified with H3PO4, HI, or HCl. On the other hand, spherical lithium particles were produced, when lithium was electrodeposited in PC containing 1.0 mol dm–3 LiPF6 on the lithium surface modified with HE However spherical lithium particles were not obtained, when PC containing 1.0 mol dm–3 LiClO4 was used as the electrolyte. The lithium surface modified by H3PO4, HI, or HCl was covered with a thick film consisting of Li3PO4, Li2CO3, LiOH, or Li2O. The lithium surface modified with HF was covered with a thin bilayer structure film consisting of LiF and Li2O. These results clearly show that the surface film having the thin bilayer structure (LiF and Li2O) and the use of PC containing 1.0 mol dm–3 LiPF6 enhance the suppression of dendrite formation of lithium.  相似文献   

10.
New lithium nickel nitrides Li3−2xNixN (0.20 ≤ x ≤ 0.60) have been prepared and investigated as negative electrode in the 0.85/0.02 V potential window. These materials are prepared from a Ni/Li3N mixture at 700 °C under a nitrogen flow. Their structural characteristics as well as their electrochemical behaviour are investigated as a function of the nickel content. For the first time are reported here the electrochemical properties of a lithium intercalation compound based on a layered nitride structure. The Li3−2xNixN compounds can be reversibly reduced and oxidized around 0.5 V versus Li/Li+ leading to specific capacities in the range 120-160 mAh/g depending on the nickel content and the C rate. Due to a large number of lithium vacancies, the structural stability provides an excellent capacity retention of the specific capacity upon cycling.  相似文献   

11.
Li-doped NiO was synthesized by molten salt method. LiNO3-LiOH flux was used as a source for Li doping. NiCl2 was added to the molten Li flux and then processed to make the Li-doped NiO material. Li:Ni ratios were maintained from 5: 1 to 30: 1 during the synthetic procedure and the chemical compositions after characterization were found from Li0.08Ni0.92O to Li0.16Ni0.84O. Li doping did not change the basic cubic structural characteristics of NiO as evidenced by XRD studies; however, the lattice parameter decreased from 0.41769 nm in pure NiO to 0.41271 nm in Li0.16Ni0.84O. Hydrogen gas sensors were fabricated by using these materials as thick films on alumina substrates. The half surface of each sensor was coated with the Pt catalyst. The sensor, when exposed to the hydrogen gas blended in air, heated up the catalytic surface leaving the rest half surface (without catalyst) cold. The thermoelectric voltage thus built up along the hot and cold surface of the Li-doped NiO made the basis for detecting hydrogen gas. The linearity of the voltage signal vs H2 concentration was checked up to 4% of H2 in air (as higher concentrations above 4.65% are explosive in air) using Li0.10Ni0.90O as the sensor material. The response time T90 and the recovery time RT90 were less than 25 sec. H2 concentration from 0.5% to 4% showed a good linearity against voltage. There was minimum interference of other gases and hence H2 gas can easily be detected.  相似文献   

12.
The mechanisms for lithium diffusion in LixCo0.5Ni0.5O2 were investigated using the galvanostatic intermittent titration technique (GITT). Membrane electrodes prepared with poly(vinylidene fluoride) and carbon black were employed in this study. The measured Brunauer-Emmett-Teller (BET) area of the LixCo0.5Ni0.5O2 powder was combined with the GITT data to obtain the lithium chemical diffusion coefficient (), the lithium self-diffusion coefficient (DLi+) and the thermodynamic factor (Φ) as a function of Li concentration (x). All three parameters vary non-monotonically with x. A minimum in and DLi+ at x=0.5, along with structural changes, suggests the formation of a lithium superlattice at that concentration. The behavior of is complex but for x<0.34 it eventually undergoes a continuous decrease due to the metallic character of LixCo0.5Ni0.5O2. We attribute the limitation of the specific reversible capacity of LixCo0.5Ni0.5O2 to this decrease in and to elevated electrode voltages. Li transport in LixCo0.5Ni0.5O2 is analyzed taking the variations in the cell parameters and the oxidation states of the Ni, Co and O ions into account.  相似文献   

13.
A combination technique of in situ synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) was employed to study the Li1−xNi0.5Co0.25Mn0.25O2 cathode material for Li-ion battery. The Li/Li1−xNi0.5Co0.25Mn0.25O2 cell with x = 0.82 charged to 4.5 V showed the first charge capacity of 225 mAh/g. The X-ray absorption near edge structure (XANES) indicated that the initial valences were +2/+3, +3 and +4 for Ni, Co and Mn, respectively. The main redox reaction during delithiation was achieved by Ni via the reaction Ni2+ → Ni3+ followed by Ni3+ → Ni4+. The oxidation states of Co and Mn remained Co3+ and Mn4+. The bond length of Ni-O decreased drastically, while the Co-O and Mn-O distances exhibited a slight change with the decrease of Li content in the electrode. It was further revealed that all the second shell metal-metal (Ni-M, Co-M and Mn-O) distances decreased due to the oxidation of metal ions. In situ XRD data showed that both a- and c-axes varied with different Li contents in this material system. At the beginning of charge, there was a contraction along the c-axis and a slight expansion along the a-axis. As x reached 0.57, the trend of the variation in c-axis was opposite. The changes of lattice parameters could be explained by the balance between ionic radius and the repulsive force of the layer-structured material.  相似文献   

14.
This study aims to investigate the influence of substitutionally incorporated Li on sensing performance of nickel oxide films for bolometer applications by comparing Ni1-xO and (LiyNi1-y)1-xO films. From the results of structural analysis, it was confirmed that the film deposited from Li0.2Ni0.8O target contained Li which substitutionally occupies the Ni cation site while maintaining a cubic NiO structure. The substitutionally incorporated Li in nickel oxide can serve as an acceptor providing a hole carrier, like as a structural defect. However, in contrast to the structural defect, the substitutional incorporation of Li made it possible to increase the number of hole carriers in nickel oxide film while maintaining excellent film quality. In addition, the contact resistance with electrode was greatly reduced as a result of the substitutionally incorporated Li. These changes in structural and electrical properties lead to a significant reduction of 1/f noise arisen from the (LiyNi1-y)1-xO film. As a result, the sensing performance of the (LiyNi1-y)1-xO film as evaluated using the (αH/n)1/2/|β| value was nearly 10 times better than that of the Ni1-xO film. Consequently, it can be concluded that the substitutional incorporation of Li can significantly improve the sensing performance of nickel oxide films for bolometer applications.  相似文献   

15.
The purpose of this study was the synthesis of lithium disilicate glass-ceramics in the system SiO2–Al2O3–K2O–Li2O. A total of 8 compositions from three series were prepared. The starting glass compositions 1 and 2 were selected in the leucite–lithium disilicate system with leucite/lithium disilicate weight ratio of 50/50 and 25/75, respectively. Then, production of lithium disilicate glass-ceramics was attempted via solid-state reaction between Li2SiO3 (which was the main crystalline phase in compositions 1 and 2) and SiO2. In the second series of compositions, silica was added to fine glass powders of the compositions 1 and 2 (in weight ratio of 20/100 and 30/100) resulting in the modified compositions 1–20, 1–30, 2–20, and 2–30. In the third series of compositions, excess of silica, in the amount of 30 wt.% and 20 wt.% with respect to the parent compositions 1 and 2, was introduced directly into the glass batch. Specimens, sintered at 800 °C, 850 °C and 900 °C, were tested for density (Archimedes’ method), Vickers hardness (HV), flexural strength (3-point bending tests), and chemical durability. Field emission scanning electron microscopy and X-ray diffraction were employed for crystalline phase analysis of the glass-ceramics. Lithium disilicate precipitated as dominant crystalline phase in the crystallized modified compositions containing colloidal silica as well as in the glass-ceramics 3 and 4 after sintering at 850 °C and 900 °C. Self-glazed effect was observed in the glass-ceramics with compositions 3 and 4, whose 3-point bending strength and microhardness values were 165.3 (25.6) MPa and 201.4 (14.0) MPa, 5.27 (0.48) GPa and 5.34 (0.40) GPa, respectively.  相似文献   

16.
A series of Ni–Co ferrites with the general formula Ni1-x Co x Fe2O4 (x = 0, 0.2, 0.5, 0.8 and 1.0) was prepared by a low-temperature hydroxide coprecipitation route. The catalyst systems were characterized by adopting various physico-chemical techniques. Alkylation of pyridine with methanol was carried out in a down-flow vapor-phase reactor. The influence of surface acid–base properties, cation distribution in the spinel lattice and various reaction parameters are discussed. It was observed that the systems possessing x values 0.5 are selective for 3-picoline formation, whereas the ones with x values 0 and 0.2 give a mixture of 2- and 3-picolines. Pyridine conversion increased with the progressive substitution of Ni2+ ions by Co2+ ions. Cation distribution in the spinel lattice influences their acidic and basic properties, and these factors have been adequately considered as helpful to evaluate the activity of the systems.  相似文献   

17.
A new type of Li1−x Fe0.8Ni0.2O2-Li x MnO2 (Mn/(Fe+Ni+Mn)=0.8) material was synthesized at 350 °C in an air atmosphere by a solid-state reaction. The material had an XRD pattern that closely resembled that of the original Li1−x FeO2-Li x MnO2 ((Fe+Ni+Mn)=0.8) with much reduced impurity peaks. It was composed of many large particles of about 500–600 nm and small particles of about 100–200 nm, which were distributed among the larger particles. The Li/Li1−x Fe0.8Ni0.2O2-Li x MnO2 cell showed a high initial discharge capacity above 192 mAh/g, which was higher than that of the parent Li/Li1−x FeO2-Li x MnO2 (186 mAh/g). This cell exhibited not only a typical voltage plateau in the 2.8 V region, but also an excellent cycle retention rate (96%) up to 45 cycles. We suggest a unique role of doped nickel ion in the Li/Li1−x Fe0.8Ni0.2O2-Li x MnO2 cell, which results in the increased initial discharge capacity from the redox reaction of Ni2+/Ni3+ between 2.0 and 1.5 V region.  相似文献   

18.
K.M Shaju 《Electrochimica acta》2003,48(18):2691-2703
Li ion kinetics in the O2-phase layered manganese oxides, Li2/3(Co0.15Mn0.85)O2 (O2(Li)) and Li(2/3)+x(Co0.15Mn0.85)O2 (x=1/3 (O2(Li+x))), has been studied by the electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) at room temperature and the results were correlated with the observed cathodic behaviour. Both compounds show a reversible capacity of ∼180 mA h/g at low current density (∼5 mA/g). EIS studies as a function of cycle number show an increased contribution of resistance associated with surface film formation and bulk contribution which is in agreement with the increased capacity fading observed in O2(Li+x) after 10-15 cycles. The Li ion diffusion coefficient (DLi) vs voltage plots show minima during the first charge cycle coinciding with the irreversible plateau of the voltage vs capacity profiles reflecting the irreversible phase change in both the compounds. The values of DLi (GITT method) observed for the second and subsequent cycles (≤6) in the full voltage range (3.0-4.4 V) are 2×10−11-10×10−11 cm2/s for O2(Li+x) and 0.5×10−10-3.0×10−10 cm2/s for O2(Li). Variation of DLi as a function of cycle number (up to 35) indicates that, in addition to the interface kinetics, changes in the DLi values with cycling also contribute to the capacity fading of the compounds, especially in O2(Li+x).  相似文献   

19.
Ni1?xLixO (x = 0, 0.03, 0.06, 0.09) powders were prepared by sol–gel method combined with sintering procedure using Ni(CH3COO)2·4H2O and citric acid as the raw materials and alcohol as solvent. The crystal structures of the samples were investigated by X-ray diffraction and Raman spectroscopy. The thermoelectric properties, such as the electrical conductivity, the Seebeck coefficient and the thermal conductivity were measured. The results showed that all the samples are p-type semiconductors. The electrical conductivity increases with the increase of the temperature, which indicates that the substitution of Li+ for Ni2+ can increase the concentrations and mobility of the carriers. The thermal conductivity decreases remarkably with the increase of the Li doping content, which indicates that Li doping can enhance the scattering of phonon. However, the Seebeck coefficient will decline with the increase of the Li doping content. As results of the increase of electrical conductivity and reduction of thermal conductivity, Li doping can increase the figure of merit (ZT) of NiO, the ZT value reach 0.049 at 770 K for Ni1?xLixO with x = 0.06.  相似文献   

20.
In this work, the effects of decomposition products of electrolytes on the thermal stability of bare and TiO2-coated Li1−xNi0.8Co0.2O2 (1 > x ≥ 0) cathode material have been investigated by means of thermoanalytical, thermokinetic and temperature-programmed desorption-mass spectroscopy (TPD-MS) techniques. It is shown clearly that the decomposition products of the electrolytes such as carboxylates have distinctive effects on the thermal stability of the electrode materials. Firstly, the thermoanalytical and TPD-MS results indicate that surface coating can suppress the amount of oxygen release from the delithiated cathode material. The thermokinetic analytical results show that the reaction of oxygen release (i.e. oxygen loss) from delithiated Li1−xNi0.8Co0.2O2 material can be promoted by carboxylate salts supported on the electrode surface due to the decrease of initiated activation energy Ea of the reaction. Finally, the amount of carboxylate salts and length of carbon chains in carboxylates have different promotional effects on the thermal properties of the electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号