首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
This paper presents a review and evaluation of the design standards and the analytical and experimental methods used in the seismic design of nuclear power plants with emphasis on United States practice. Three major areas were investigated: (a) soils, siting, and seismic ground motion specification; (b) soil-structure interaction; and (c) the response of major nuclear power plant structures and components. The purpose of this review and evaluation program was to prepare an independent assessment of the state-of-the-art of the seismic design of nuclear power plants and to identify seismic analysis and design research areas meriting support by the various organizations comprising the ‘nuclear power industry’. Criteria used for evaluating the relative importance of alternative research areas included the potential research impact on nuclear power plant siting, design, construction, cost, safety, licensing, and regulation.Three methods were used in the study herein. The first involved the review of current literature, focusing primarily on publications dated later than 1970. This review included the results of numerous studies, of which those of Japanese origin and those presented in recent international conferences were predominant. The second method entailed a review of international experience in the dynamic testing of nuclear power plant structures and components, and related experience with scaled and model tests. Included in this experience, in addition to the questions of analysis, design, and measurement of dynamic parameters, are related efforts involving a review of responses obtained during measured earthquake response and investigations into appropriate methods for backfitting or upgrading older nuclear power plants to meet new seismic criteria.The third approach was to obtain the opinions and recommendations of technically knowledgeable individuals in the US ‘nuclear industry’; the survey results are shown in the Appendix.  相似文献   

2.
Two seismic margin review methodologies — one by USNRC and the other by EPRI — have been developed in the last four years. The focus is on assessing the capability of existing nuclear power plants to withstand earthquakes larger than the design basis earthquakes. The methods restrict the analysis to a selected few systems and components using the insights from past seismic PRAs, seismic analysis and qualification results, and earthquake experience data. The objective of this paper is to describe recent and on-going studies in extending the NRC seismic margin review methodology. Specifically, three topics are discussed: (1) extension of the HCLPF capacity to analyse radiological releases and importance of human factors and non-seismic failures; (2) importance of BWR plant systems and functions to seismic margins; and (3) extensions of seismic margin review results to obtain seismic risk estimates.  相似文献   

3.
Seismic re-evaluation of nuclear facilities worldwide: overview and status   总被引:1,自引:0,他引:1  
Existing nuclear facilities throughout the world are being subjected to severe scrutiny of their safety in the event of an earthquake. In the United States, there have been several licensing and safety review issues for which industry and regulatory agencies have cooperated to develop rational and economically feasible criteria for resolving the issues. Currently, all operating nuclear power plants in the United States are conducting an Individual Plant Examination of External Events, including earthquakes beyond the design basis. About two-thirds of the operating plants are conducting parallel programs for verifying the seismic adequacy of equipment for the design basis earthquake. The U.S. Department of Energy is also beginning to perform detailed evaluations of their facilities, many of which had little or no seismic design. Western European countries also have been re-evaluating their older nuclear power plants for seismic events often adapting the criteria developed in the United States. With the change in the political systems in Eastern Europe, there is a strong emphasis from their Western European neighbors to evaluate and upgrade the safety of their operating nuclear power plants. Finally, nuclear facilities in Asia are also being evaluated for seismic vulnerabilities. This paper focuses on the methodologies that have been developed for re-evaluation of existing nuclear power plants and presents examples of the application of these methodologies to nuclear facilities worldwide.  相似文献   

4.
As part of the implementation of the severe accident policy, nuclear power plants in the US are conducting the individual plant examination of external events (IPEEE). Seismic events are treated in these IPEEEs by either a seismic probabilistic risk assessment (PRA) or a seismic margin assessment. The major elements of a seismic PRA are the seismic hazard analysis, seismic fragility evaluation of structures and equipment and systems analysis using event tree and fault tree analysis techniques to develop accident sequences and calculate their frequencies of occurrence. The seismic margin assessment is a deterministic evaluation of the seismic margin of the plant beyond the design basis earthquake. A review level earthquake is selected and some of the components that are on the success paths are screened out as exceeding the review level earthquake; the remaining ones are evaluated for their seismic capacity using information from the original plant design criteria, test data and plant walkdown. The IPEEEs of over 100 operating nuclear power plants are nearing completion. This paper summarizes the lessons learned in conducting the IPEEEs and their applicability to nuclear power plants outside of the United States.  相似文献   

5.
A seismic risk analysis has been performed to evaluate the seismic safety of a nuclear power plant for strong earthquakes beyond a design earthquake level. A site-specific median spectrum has generally been used for a seismic fragility analysis of structures and equipment in Korean nuclear power plants as a part of a probabilistic seismic risk assessment. The site-specific response spectrum, however, does not represent the same probability of an exceedance over entire frequency range of interest. The site-specific uniform hazard spectrum (UHS) is more appropriate for use in a seismic probabilistic risk assessment (SPRA) than the site-specific spectrum, since there are only a few strong motion data and seismological information for the nuclear plant sites in Korea. In this study, the uniform hazard spectra were developed using the available seismic hazard data for four Korean NPP sites.  相似文献   

6.
Seismic design and analysis of nuclear plant systems, structures and components have requested huge effort and tremendous costs in the past two decades. The extended use of sophisticated, linear response type methods (modal analysis, spectral response) and the associated conservatism are responsible for the significant stiffening of the piping systems and the multiplication of supports and snubbers. The remedy used against the seismic risk seems worse than the pain itself, and safety might be impaired rather than improved. Indeed, system stiffening increases the average load level in normal operation (stresses, fatigue, nozzle loads, etc.); supports do not behave ideally as assumed (friction, rust, etc.) and snubbers are remarkably unreliable. On the other hand, experience with actual earthquakes shows that industrial facilities designed using very simplistic seismic techniques, or even no seismic requirement at all, suffer essentially no damage, even in the case of a large earthquake. This paradox challenges the traditional seismic design techniques, and appeals for revised seismic qualification methods of piping systems. When the assumption of the occurrence of an earthquake event is made in a plant in operation, which has not been designed against seismic criteria, the use of the standard seismic qualification techniques is still more questionable; simplified (quasi-static) techniques offer in this case a valuable and economically justified alternative. The paper describes the application of the quasi-static “modified load coefficient method” to the seismic assessment of the piping in a nuclear plant in operation, designed during the pre-seismic era.  相似文献   

7.
Seismic protection systems (SPS) have been developed and used successfully in conventional structures, but their applications in nuclear power plants (NPPs) are scarce. However, valuable research has been conducted worldwide to include SPS in nuclear engineering design. This study aims to provide a state-of-the-art review of SPS in nuclear engineering and to answer four significant research questions: (1) why are SPS not adopted in the nuclear industry and what issues have prevented their deployment? (2) what types of SPS are being considered in nuclear engineering research? (3) what are the strategies for location of SPS within NPPs? and (4) how may SPS provide improved structural performance and safety of NPPs under seismic actions? This review is conducted following the procedures of systematic reviews, where possible.

The issues concerning the use of SPS in NPPs are identified: cost, safety, licensing and scarcity of applications. NPPs demand full structural integrity and reactor's safe shutdown during earthquake actions. Therefore, horizontal isolation may be insufficient in active seismic zones and isolation in the vertical direction may be required. Based on the results in this review, it is likely that next generation reactors in seismic zones will include state-of-the-art SPS to achieve full standardised design.  相似文献   

8.
为解决现有地震概率安全评价(PSA)相关性分析简化假设存在的问题,建立更准确反映核电厂构筑物、系统和部件(SSC)地震相关性的分析方法,对基于分离变量的易损度相关性分析开展了研究。结合易损度模型对分析方法进行了理论推导,并对方法的实施过程进行了介绍。利用该方法对不同条件下SSC的联合失效开展案例分析,得到了联合失效的易损度曲线和失效频率分析结果,并与现有相关性简化假设得到的结果进行了对比。研究结果表明,基于分离变量的地震PSA相关性分析方法能弥补现有方法的不足,支持核电厂地震PSA开发和应用。  相似文献   

9.
The German nuclear safety standard KTA 2201: “Design of nuclear power plants against seismic events”, consists of the following parts: 1. basic principles; 2. characteristics of seismic excitation; 3. design of structural components; 4. design of mechanical and electrical parts; 5. seismic instrumentation; and 6. measures subsequent to earthquakes.While Part 1 was published in June 1975, Part 5 was approved by the Nuclear Safety Standards Commission — Kerntechnischer Ausschuss (KTA) — in June 1977. The other parts are still under development. The requirements of the safety standard KTA 2201.5 deal with
1. (a) number of location (number and location of acceleration recording systems for different sites, single-block plants and multi-block plants);
2. (b) characteristics of instruments (readiness and operation of instruments, margin or errors, dynamic and operation characteristics, duration of records, seismic switch);
3. (c) triggering and information (loss of electric power, start of the acceleration recording systems, threshold of acceleration for triggers and seismic switches, optical and acoustic information); and
4. (d) documentation (results of recordings, inspection and tests).
The purpose of this paper is to present some detailed requirements of the safety standard KTA 2201.5, with its philosophy, and compare these with corresponding requirements in the US. It will be shown that with relatively few instruments, which are very reliable in operation and in triggering, an optimum of data may be available after an earthquake.  相似文献   

10.
Seismic reliability of electrical power transmission systems   总被引:1,自引:0,他引:1  
The reliability of electric power transmission systems is important for the probabilistic safety assessment of nuclear power plants under a given earthquake loading as it relates to the loss of off site power to the nuclear power plants. Here, a comprehensive model to evaluate the seismic reliability of electric power transmission systems is presented. The model provides probabilistic assessments of structural damage and abnormal power flow that can lead to power interruption in a transmission system under a given earthquake. With the proposed methodology seismic capacities of electrical. equipment are determined on the basis of available test data and simple modeling from which fragility functions of specific substations are developed. Earthquake ground motions are defined as stochastic processes. Probabilities of network disconnectivity and abnormal power flow are assessed through Monte Carlo simulations. The proposed model is applied to the electric power network in San Francisco and vicinity under the 1989 Loma Prieta earthquake, and the probabilities of power interruption are contrasted with the actual power failures observed during that earthquake.  相似文献   

11.
This paper proposes a plausible methodology for quantification of risk due to seismic related design and construction errors in nuclear power plants. This is based on information available on errors discovered in the past, as reported in construction deficiency reports pursuant to US NRC regulations. Deficiencies found during construction whose recurrence is considered possible are included. The possibility of deficiencies not being discovered is evaluated by comparison of data between operating plants and those under construction. Error consequences are also evaluated from construction deficiency reports; in particular, the impact of errors on the seismic capacity of the plants is quantified by an extension of seismic probabilistic risk assessment (PRA) methods.The application of the method is illustrated based on a limited review of data, showing its capabilities and limitations. Some tentative results are presented, but these by no means represent a formal assessment.  相似文献   

12.
Technical aspects of seismic isolation systems show merit for their use in nuclear power plants. Less quantifiable non-technical aspects must be evaluated in the decision to employ a seismic isolation system.First, non-technical aspects are discussed. An historical and applications perspective is given, and it is suggested that the number of applications of seismic isolation systems is correlated with the amount of research activity in this area. For nuclear plants, it is suggested that application of seismic isolation systems is in part related to standardized plant designs in high seismic regions. Also, for nuclear plants, it is suggested that direct capital cost, enhanced seismic safety, regulatory licensing and unknown locations of nearby active faults are all factors which can weigh in favor and/or not in favor for seismic isolation application.Second, technical aspects are discussed. The technical results show that seismic isolation reduces building response, and reduces floor response spectra/equipment response. These results combine in application to reduce seismic risk and thus enhance safety for nuclear plants.  相似文献   

13.
Technical aspects of seismic isolation systems show merit for their use in nuclear power plants. Less quantifiable non-technical aspects must be evaluated in the decision to employ a seismic isolation system.First, non-technical aspects are discussed. An historical and applications perspective is given, and it is suggested that the number of applications of seismic isolation systems is correlated with the amount of research activity in this area. For nuclear plants, it is suggested that application of seismic isolation systems is in part related to standardized plant designs in high seismic regions. Also, for nuclear plants, it is suggested that direct capital cost, enhanced seismic safety, regulatory licensing and unknown locations of nearby active faults are all factors which can weigh in favor and/or not in favor for seismic isolation application.Second, technical aspects are discussed. The technical results show that seismic isolation reduces building response, and reduces floor response spectra/equipment response. These results combine in application to reduce seismic risk and thus enhance safety for nuclear plants.  相似文献   

14.
Nuclear power plant (NPP) design is strictly dependent on seismic hazard and safety aspects concerned with the external events of the site. Earthquake resistant structures design requires realistic and accurate physical and theoretical models to describe the response of the nuclear power plants (NPPs) that depend on both the ground motion characteristics and the dynamic properties of the structures themselves. In order to improve the design of new NPPs and, at the same time, to retrofit existing ones the dynamic behaviour of structures subjected to critical seismic excitations that may occur during their expected service life must be evaluated.The aim of this work is to select new effective methods to assess NPPs vulnerability by properly capturing the effects of a safe shutdown earthquake (SSE) event on nuclear structures, like the near term deployment IRIS reactor, and to evaluate the seismic resistance capability of as-built structures systems and components. To attain the purpose a validated deterministic methodology based on an accurate finite element modelling coupled to substructure and time history approaches was employed for studying the overall dynamic behaviour of the NPP relevant components. Moreover the set up three-dimensional model was also validated to evaluate the performance and reliability of the adopted FEM code (mesh refinements and type element influence). This detailed numerical assessment, involving the most widely used finite element numerical codes (MSC.Marc® and Ansys®), allowed to solve, perform and simulate as accurately as possible the dynamic behaviour of structures which may withstand a lot of more or less complicate structural problems.To evaluate the accuracy and the reliability as well as to determine the related error of the set-up procedure, the obtained seismic analyses results in term of accelerations, propagated from the ground to the auxiliary building systems and components, and displacements were compared highlighting a very good agreement.  相似文献   

15.
This article presents an innovative nuclear power technology, based on the use of modular type fast-neutron reactors SVBR-75/100 having heavy liquid-metal coolant, i.e. eutectic lead–bismuth alloy, which was mastered in Russia for the nuclear submarines’ reactors. Reactor SVBR-75/100 possesses inherent self-protection and passive safety properties that allow excluding of many safety systems necessary for traditional type reactors. Use of this nuclear power technology makes it possible to eliminate conflicting requirements among safety needs and economic factors, which is particularly found in traditional reactors, to increase considerably the investment attractiveness of nuclear power based on the use of fast-neutron reactors for the near future, when the cost of natural uranium is low and to assure development of nuclear power in market conditions. On the basis of the factory-fabricated “standard” reactor modules, it is possible to construct the nuclear power plants with different power and purposes. Without changing the design, it is possible for reactor SVBR-75/100 to use different kinds of fuel and operate in different fuel cycles with meeting the safety requirements.  相似文献   

16.
This paper describes recent New Zealand experience with seismic base isolation, and in particular, the distinguishing feature of the New Zealand system - that of using mechanical energy dissipators to control response.There are presently 22 structures in New Zealand which use base isolation concepts for seismic protection. Nuclear power plants are not used in New Zealand, but the principles adopted for the above buildings and bridge structures are appropriate for nuclear structures and, as shown by use of hypothetical examples, significant benefits can be achieved for these structures also. The most important is a marked reduction for the in-structure acceleration spectra with consequential implications for the enhanced safety of secondary structures and equipment.The paper also reviews the experimental and analytical studies undertaken to validate the technique and addresses the issues of reliability and cost.  相似文献   

17.
The purpose of this paper is to present a summary of the development of the seismic re-evaluation program for older nuclear power plants in the US. The principal focus of this re-evaluation is the use of actual strong motion earthquake response data for structures, mechanical and electrical systems and components. These data are supplemented by shake table test results. This type of seismic re-evaluation has lead to major cost reduction as compared to more conventional analytical and component specific testing procedures.  相似文献   

18.
地震是核电厂主要外部灾害之一,地震风险评估对于核电厂的安全评价具有重要的价值。抗震裕量评价(SMA)是开展核电厂地震灾害风险分析的重要方法之一,其目的是为了判断核电厂的抗震设计能力相对于设计基准地震的抗震裕量,找出核电厂的抗震薄弱环节,提高核电厂的抗震能力。本文针对福建福清核电厂1、2号机组进行抗震裕量评价,分析表明电力支持系统和一回路辅助管道的抗震能力相对薄弱,是导致核电厂抗震能力薄弱的主要原因,电力支持系统和一回路辅助管道需进一步提高其抗震能力,且核电厂需考虑编制地震应急规程。  相似文献   

19.
The seismic risk estimates and seismic margin assessment for nuclear power plants should consider the potential effects of design and construction errors. These errors generally modify the component responses and fragilities. The concern with design and construction errors is that they may simultaneously affect a large number of systems and structures and negate the possible benefits of redundancy. A methodology for treating the effects of gross errors in seismic PRA and seismic margin studies consist of enumeration and classification of errors, sensitivity studies to identify significant errors, collection of data on errors and incorporation into the margin and risk estimation.  相似文献   

20.
The United States Nuclear Regulatory Commission initiated a formal review of the seismic margin of all operating nuclear power plants in the US with the issuance in 1991 of Generic Letter 88-20, Supplement 4 (‘Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities’). Virtually all of the US nuclear utilities have submitted their responses for seismic IPEEE and these submittals are in the process of being reviewed by the NRC. The objective of this paper is to provide an industry perspective on the results and the insights obtained from the utility seismic IPEEE submittals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号