首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Inversion layer ultrasonic transducers have been investigated recently as an interesting approach in wideband transducer design. In this paper we present an analytical model of multilayer ultrasonic transducers with an inversion layer. Our analysis of the wave propagation problem of an inversion layer transducer includes a functional decomposition of the electrical input impedance. It becomes clear from this decomposition that an inversion layer transducer can be modeled as three elements in series connection, i.e., a clamped capacitance, a classical motional impedance, and a coupled motional impedance. The first two elements make up the classical model of a single element transducer. The coupled motional impedance describes the coupled interaction between the regular and the inverted piezoelectric sublayers, and thus reflects the effect of an inversion layer. We present examples which show that inversion layer transducers are advantageous in achieving such useful features as dual-frequency operation mode as used in harmonic imaging or broadband performance desired in most ultrasonic applications.  相似文献   

2.
Wafer-type piezoelectric transducers are effective transducers for the excitation and detection of ultrasonic Lamb waves in plate-like structures. Such transducers are, however, vulnerable to corrosion and physical damage when mounted in exposed locations. In this paper we describe an inductively coupled Lamb wave transducer that eliminates the need for direct electrical connections. Signals are coupled into and out of the transducer using two probe coils. In this paper we explore the operation of inductively coupled transducers both analytically and experimentally. Finite-element analysis is used to determine inductances and the coupling constant, and electrical circuit analysis to determine the transfer function and its dependence on the gap between the probe coils and the transducer. Experiments show that return signals of millivolt amplitude are obtained when the transducer is excited with 10-V amplitude pulses. These transducers are suitable for permanent mounting on structures to be monitored for cracks or flaws  相似文献   

3.
Piezoelectric micromachined ultrasonic transducers (pMUTs), a potential alternative for conventional one-dimensional phased array ultrasonic transducers, were investigated. We used a modeling approach to study the performance of lead zirconate titanate (PZT)-driven pMUTs for the frequency range of 2-10 MHz, optimized for maximum coupling coefficient, as a function of device design. Using original tools designed for the purpose, a comprehensive build-test finite element model was developed to predict and measure the device performance. In particular, the model estimates the device coupling coefficient and the acoustic impedance, besides the readily extractable resonance frequency and bandwidth. To validate the model, a prototype device was built and tested, showing good agreement between the model predictions and experimental results. Modeling results indicate that the coupling coefficient is significantly affected by silicon membrane, PZT, and top electrode thickness as well as the top electrode design. Results also indicate considerable flexibility in maximizing the coupling coefficient while maintaining the device acoustic impedance at a level matching that of the human body. The bandwidth proved to be superior to that of conventional transducers, reaching 102% in some cases.  相似文献   

4.
We report electrical characterization of micromachined polysilicon capacitive diaphragms for use as ultrasonic transducers. Admittance measurements yield insight into the resonant behavior and also the damping resulting from ultrasonic radiation and frictional forces caused by the etch release holes. Unbonded transducers exhibit sharp resonances with Q values that increase with decreasing air pressure. We also report for the first time direct bonding of these transducers to solid surfaces. Transducers survive the bonding process and show distinctly different displacement in response to applied dc bias. Finally, a single-degree-of-freedom model is used to obtain insight into the various contributions to damping.  相似文献   

5.
The electromechanical coupling coefficient is an important figure of merit of ultrasonic transducers. The transducer bandwidth is determined by the electromechanical coupling efficiency. The coupling coefficient is, by definition, the ratio of delivered mechanical energy to the stored total energy in the transducer. In this paper, we present the calculation and measurement of coupling coefficient for capacitive micromachined ultrasonic transducers (CMUTs). The finite element method (FEM) is used for our calculations, and the FEM results are compared with the analytical results obtained with parallel plate approximation. The effect of series and parallel capacitances in the CMUT also is investigated. The FEM calculations of the CMUT indicate that the electromechanical coupling coefficient is independent of any series capacitance that may exist in the structure. The series capacitance, however, alters the collapse voltage of the membrane. The parallel parasitic capacitance that may exist in a CMUT or is external to the transducer reduces the coupling coefficient at a given bias voltage. At the collapse, regardless of the parasitics, the coupling coefficient reaches unity. Our experimental measurements confirm a coupling coefficient of 0.85 before collapse, and measurements are in agreement with theory.  相似文献   

6.
Normal ultrasonic transducers of 0.5, 1, and 2 MHz are modified using delay lines which are made of Quartz. Such modification is to ameliorate the capability of the transducer to investigate Gd-doped ZnO thin films whose thickness is too thin. The normal transducers cannot test materials that have too thin thickness due to the near fields of these transducers. The near field is considered as blind area of the transducer. Therefore, the specimen under test must have thickness bigger than the near field of the used transducer, or instead delay lines can be used. Samples of Gd-doped ZnO thin films are prepared using sol gel technique. The ultrasonic pulse echo method is used at room temperature. Flaws are found in different prepared specimens. Results show that such delay lines are suitable to ameliorate the ultrasonic transducer to test Gd-doped ZnO thin films.  相似文献   

7.
Shear piezoelectric properties of poly(vinylidene fluoride) (PVDF) and copolymer of vinylidene fluoride and trifluoroethylene [P(VDF/TrFE)] have been studied precisely in a wide temperature range from 10 to 400 K. It was found that these polymers have the shear electromechanical coupling factors k15 and k24 large enough to be utilized for transverse ultrasonic transducers operating in a wide frequency range and in a wide temperature range below 400 K. Shear mode ultrasonic transducers of P(VDF/TrFE) were fabricated and their performances were studied both experimentally and theoretically. The shear polymer transducers are useful for generation and detection of transverse ultrasonic waves  相似文献   

8.
Sandwiched piezoelectric ultrasonic transducers of longitudinal-torsional compound vibrational modes were studied. The transducers consist of coaxially segmented, longitudinally and tangentially polarized piezoelectric ceramic rings, a back metal cylinder, and a front exponential solid metal horn. Based on the plane-wave approximation, the equivalent circuits of the longitudinal and torsional vibrations in the sandwiched transducer were obtained and the resonance frequency equations of the transducer in longitudinal and torsional vibrations were derived. By means of choosing the radius decay coefficient of the front exponential horn, the longitudinal and torsional vibrations are made to resonate at the same frequency in the transducer. Sandwiched piezoelectric ultrasonic transducers of longitudinal-torsional compound modes were designed and fabricated according to the frequency equations. It is demonstrated that the measured resonance frequencies of the transducers are in good agreement with the theoretical results, and the measured resonance frequencies of the transducers in longitudinal and torsional vibration modes are also in good agreement with each other. Theoretical and experimental results show that this kind of transducer can be used in ultrasonic welding, ultrasonic machining, ultrasonic motors, and other ultrasonic applications which need large displacement amplitudes  相似文献   

9.
Disposable ultrasonic contact transducers have been constructed with inexpensive PVDF films for nondestructive testing (NDT) applications. This paper reports the temperature-dependent ultrasonic performance of commercial polyvinylidene fluoride (PVDF) films and PVDF sensors. PVDF film was evaluated for its material properties of interest for ultrasonic transducer performance including the relative dielectric constant εr, dielectric loss tangent tan δe , electromechanical coupling constant kt, mechanical quality factor Qm, and acoustic impedance Z. Disposable PVDF transducers were then coupled to both low and high acoustic impedance test panels and their ultrasonic insertion loss/sensitivity and frequency bandwidth measured as a function of temperature in both the pulse-echo and pitch-catch modes. The results yielded center frequencies in the 3.5-16 MHz range, with -6-dB fractional bandwidths for some of the transducers exceeding 100%. The temperature dependence of the transducers' performance is reported for the -40 to 80°C range and shows an approximate linear decrease in center frequency and increase in fractional bandwidth with increasing temperature. These measured results are compared with predictions from computer simulations based on Mason's model. These tests showed that the same disposable transducers can be used for both ultrasonic and acoustic emission sensing NDT applications. This paper summarizes the quantitative ultrasonic and vibration sensing performance for all of the disposable PVDF film transducers which were tested  相似文献   

10.
A novel ultrasonic sensing system for autonomous mobile systems   总被引:2,自引:0,他引:2  
Bank  D. 《IEEE sensors journal》2002,2(6):597-606
This paper presents a novel ultrasonic sensing system for autonomous mobile systems. We describe how wide-angled ultrasonic transducers can be used to obtain substantial information from the environment. This can be achieved by exploiting the overlapping of detection cones from neighbor sensors and by receiving cross echoes between them. The ultrasonic sensing system also allows the detection of multiple echoes from different echo paths for each sensor. In this way, a significantly higher number of echoes can be obtained in comparison to conventional ultrasonic sensing systems for mobile robots. In order to benefit from the increased sensor information, algorithms for adequate data post-processing are required. In this context, we describe how an environment model can be created from ultrasonic sensor data.  相似文献   

11.
Modeling 1-3 composite piezoelectrics: thickness-mode oscillations   总被引:11,自引:0,他引:11  
A simple physical model of 1-3 composite piezoelectrics is advanced for the material properties that are relevant to thickness-mode oscillations. This model is valid when the lateral spatial scale of the composite is sufficiently fine that the composite can be treated as an effective homogeneous medium. Expressions for the composite's material parameters in terms of the volume fraction of piezoelectric ceramic and the properties of the constituent piezoelectric ceramic and passive polymer are derived. A number of examples illustrate the implications of using piezocomposites in medical ultrasonic imaging transducers. While most material properties of the composite roughly interpolate between their values for pure polymer and pure ceramic, the composite's thickness-mode electromechanical coupling can exceed that of the component ceramic. This enhanced electromechanical coupling stems from partially freeing the lateral clamping of the ceramic in the composite structure. Their higher coupling and lower acoustic impedance recommend composites for medical ultrasonic imaging transducers. The model also reveals that the composite's material properties cannot be optimized simultaneously; tradeoffs must be made. Of most significance is the tradeoff between the desired lower acoustic impedance and the undesired smaller electromechanical coupling that occurs as the volume fraction of piezoceramic is reduced.  相似文献   

12.
为了使超声波流量计能够获得最佳的超声波信号,从理论上分析了超声波流量计的换能器系统,在此基础上提出了用收发电压灵敏度参数来表征换能器系统的综合发射和接收性能。采用等效网络理论,计算了超声波压电换能器的发射特性和接收特性,同时给出了收发电压灵敏度的表达式以及在流量计工作频率下换能器的最优设计准则。应用该准则设计并制作了适用于热量表的超声波换能器。实验结果表明:采用该设计理论研制的换能器系统可以使热量表在工作频率上获得最优的超声波信号,同时也证明了采用该理论设计的超声波流量计换能器系统的有效性。  相似文献   

13.
Nominally identical ceramic-element ultrasonic transducers, of the type used in the aerospace and metals industries for nondestructive evaluation (NDE), often have variability in the peak pressure of the generated ultrasonic pulses. The generated pressures are also high enough for nonlinear propagation to be present in the water medium, often used as coupling in these types of inspections. In this study, a measurement system for monitoring ultrasonic pulse pressure level and nonlinear propagation in water is presented. Several different industrial NDE measurement applications are examined to quantify the impact of variable pressure and nonlinear propagation with respect to test interpretation and measurement uncertainty. In particular, pulse frequency content, velocity measurements, reference block calibrations, and beam-width measurements are examined. In addition, an experimental demonstration of why nonlinear pulse distortion is not normally observed in practice is presented.  相似文献   

14.
林书玉 《声学技术》1994,(3):119-123
本文研究了一种由纵向振动夹心式压电超声换能器与弯曲圆盘组成的用于液体中超声处理的复合振动辐射器。推出了恢复合振动系统的共振频率设计方程,分析了各个振动模式的机电转换特性及其声波辐射特性,测量了振动系统的共振频率及其有效机电耦合系数。从实验及理论结果可以看出,振动系统的频率测试值与设计值基本符合。在一定的共振频率上,该振动系统具有最大的有效机电耦合系数,是一种很有前途的功率超声辐射器。  相似文献   

15.
A simple electromechanical equivalent circuit model is used to predict the behavior of capacitive micromachined ultrasonic transducers (cMUT). The equivalent circuit model of the cMUT lacks important features such as coupling to the substrate and the ability to predict crosstalk between elements of an array of transducers. To overcome these deficiencies, a finite element model of the cMUT is constructed using the commercial code ANSYS(R). Calculation results of the complex load impedance seen by single capacitor cells are presented, then followed by a calculation of the plane wave real load impedance seen by a parallel combination of many cells that are used to make a transducer. Crosstalk between 1-D array elements is found to be due to two main sources: coupling through a Stoneley wave propagating at the transducer-water interface and coupling through Lamb waves propagating in the substrate. To reduce the crosstalk level, the effect of structural variations of the substrate are investigated, which includes a change of its thickness and etched trenches or polymer walls between array elements  相似文献   

16.
方由艳  林书玉 《声学技术》2010,29(1):112-115
探讨了L型匹配网络对超声换能器振动频率的影响,从理论和实验两个方面给出了L型匹配网络与机电偶合系数的关系。通过对串联、并联的比较,并对几种方式下的匹配电路参数对系统有效机电耦合系数的影响进行分析,结果表明:通过合理选择匹配电路参数,L型匹配网络能提高压电换能器的有效机电耦合系数。  相似文献   

17.
A roller device using a square or a rectangular configuration of four roller transducers is used to scan a surface for surface-breaking cracks, by monitoring the reflection and transmission of surface waves. A self-calibrating ultrasonic technique is presented to determine the reflection and transmission coefficients or their ratio. For two configurations, namely, when one or both front rollers have crossed the surface trace of the crack, expressions have been obtained for the reflection and transmission coefficients in terms of measured voltages only, independent of parameters defining the coupling of the transducers to the specimen and the attenuation of surface waves propagating over the specimen. For a two dimensional configuration of a crack normal to the surface, the experimental results for the magnitude of the transmission coefficient show good agreement with theoretical results. For that case, the crack depth can be determined from the measured data.  相似文献   

18.
The present generation of devices based on opto-acoustic and acousto-optic conversion lets us foresee the possibility of realizing complete miniaturized transmitting-receiving transducers, able to generate and detect wideband ultrasounds by laser light. In the present paper, a miniaturized ultrasonic transducer entirely based on fiber optic technology is proposed. Such a device springs from the conjunction between our research, which has produced a highly efficient fiber optic opto-acoustic source, with the results obtained by other researchers concerning the realization of an ultrasonic receiver based on optical interferometry. Making use of the thermo-elastic effect for ultrasound generation, a source of ultrasound can be obtained by coupling a fiber optic to pulsed laser, if a film capable of absorbing laser light is placed onto fiber end. Starting from these remarks, we propose an efficient opto-acoustic source, able to generate pressure pulses with amplitude of the order of 10(4) Pa and bandwidth extending up to 40 MHz and beyond by using graphite materials as absorbing film. This solution makes use of a low-power pulsed laser as optical source possible. An ultrasonic receiving element was realized placing a Fabry-Perot cavity over the tip of a fiber optic. The cavity thickness modulation induced by ultrasonic beam is detected by an interferometer optical technique. We have realized a prototype of a receiving device that exhibits a sensitivity comparable with that of piezoelectric devices (10-100 nV/Pa) and an almost flat bandwidth extending up to 20 MHz or more. The extreme miniaturization of the resulting ultrasonic transducer, together with its wide ultrasonic frequency bandwidth, is the first step toward ultrasonic tissue biopsy. In this paper, before discussing the problem of constructing a complete ultrasonic transducer composed by a transmitter and receiver, the results carried out in these fields during the last decade are reviewed.  相似文献   

19.
Several applications of ultrasonic techniques are limited by the signal-to-noise ratio (SNR). Transducers in these applications usually operate in the pulse-echo mode. Many transducers, especially those for high temperatures, use buffer rods. Often a reference path is used to eliminate electrical and transducer drift. Interference of echo signals and noise causes errors of both amplitude and phase measurement of the detected echoes. In this paper we discuss the influence of major noise sources as a function of geometry and operating environment. The effects are studied using both experimental results and models. Although the results are applied to an ultrasonic density sensor operating in the pulse-echo mode, they are applicable to other pulse-echo mode transducers comprising homogeneous cylindrical buffer rods. This paper will show how the SNR of the density transducer was improved in a special time window from 34 to 72 dB by careful design.  相似文献   

20.
Optical Generation and Detection of Ultrasound   总被引:2,自引:0,他引:2  
Abstract: This is a review of the optical generation and detection of ultrasound on work carried out in different optical detection techniques at the Strathclyde University. We start by pointing out some limitations of conventional ultrasonic transducers and show how the use of optical-based transducers can overcome them. After explaining how laser generation of ultrasound works, we will describe and compare the advantages and disadvantages of three optical detection techniques. Finally, we describe applications in which optical ultrasound techniques appear to have a promising future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号