首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
提出了一种新颖的双模式高集成开关电容电荷泵。该电荷泵集成高频振荡器、电平移位、逻辑驱动以及4个功率MOSFET开关。与传统电荷泵相比,该电路可以工作在单电源以及双电源两种模式。单电源模式下,输出电压为-VCC;双电源模式下,输出电压为-3×VCC。电路采用0.35μm BCD工艺实现。测试结果表明:室温时,单电源模式和双电源模式下电荷泵输出电流分别为36 mA和80 mA时输出电压分别为-3.07 V和-12.10 V。在-55℃到125℃温度范围内,单电源模式和双电源模式下电荷泵输出电流分别为24 mA和50 mA时输出电压分别低于-3.06 V和-12.35 V。该电荷泵在两种模式下工作特性良好,已应用于相关工程项目。  相似文献   

2.
采用0.18μm 1.8V CMOS工艺设计一种增益提高型电荷泵电路,利用增益提高技术和折叠式共源共栅电路实现充放电电流的匹配.该电荷泵结构可以很大程度地减小沟道长度调制效应的影响,使充放电电流在宽输出电压范围内实现精确匹配,同时具有结构简单的优点.仿真结果表明,电源电压1.8V时,电荷泵电流为600μA,在0.3~1.6V输出范围内电流失配为0.6μA,功耗为3mW.  相似文献   

3.
用TSMC 0.18μm CMOS工艺设计了一种电荷泵电路。传统的电荷泵电路中充放电电流有较大的电流失配,文章采用与电源无关的基准电流源电路,运用运算放大器和自偏置高摆幅共源共栅电流镜电路实现了充放电电流的高度匹配。仿真结果表明:电源电压1.8V时,电荷泵电流为0.5mA;在0.3V~1.6V输出电压范围内电流失配小于1μA,功耗为6.8mW。  相似文献   

4.
为了有效降低传统电荷泵电路的充放电过冲电流,提高电荷泵输出控制电压的稳定性,提出、设计并实现了一种高速低过冲的电荷泵结构,该电路适用于高速锁相环及时钟数据恢复电路.电路在电源电压为1.2 V的0.13 μm CMOS工艺下设计实现,并对版图数据进行了HSPICE模拟,其结果表明,电路在2.5 GHz的速度下能很好的工作,同时电流过冲相比传统电荷泵下降了70%.  相似文献   

5.
杜占坤  郭慧民  陈杰   《电子器件》2007,30(6):2032-2035
为提高锁相环中自校准电荷泵电路的稳定性,提出了一种改进型宽摆幅自校准CMOS电荷泵电路.该电路通过引入宽摆幅自校准反馈回路,使电荷泵在输出电压变化范围较大时,UP/DOWN两个开关电流完全匹配,而且该电路不需要专门的频率补偿即可确保绝对稳定.该电荷泵采用0.25μm CMOS混合信号工艺实现.当供电电压2.5V,电荷泵输出节点电压在0.3~2.2V范围内变化时,UP和DOWN电流差值小于2%.  相似文献   

6.
冯鹏  李昀龙  吴南健 《半导体学报》2010,31(1):015009-5
设计实现了一种高效率的电荷泵电路。利用电容和晶体管对电荷传输开关进行偏置来消除开关管阈值电压的影响。同时,通过对开关管的的衬底进行动态的偏置使得在电荷传输期间当开关管打开时其阈值电压较低,在开关管关断时其阈值电压较高。该电荷泵电路的效率得到了提高。基于0.18μm,3.3V标准CMOS工艺实现了该电路。在每级电容为0.5pF,时钟频率为780KHz,电源电压为2V的情况下,测得的8级电荷泵的输出电压为9.8V。电荷泵电路和时钟驱动电路从电源处总共消耗了2.9μA的电流。该电荷泵电路适合于低功耗的应用。  相似文献   

7.
采用0.13μm CMOS工艺,设计了一种用于模数转换器时钟电路的电荷泵。在共源共栅充/放电流源与其偏置电路之间增加传输门,有效地抑制了电荷泵关闭时产生的漏电流。同时,采用电流源提升技术,有效地提高了电荷泵充/放电电流支路的阻抗,抑制了沟道长度调制效应的影响,提高了电荷泵的电流匹配性。仿真结果表明,在1.2 V电源电压、20μA输出电流的条件下,输出电压的变化范围为0.13~0.93 V时,该电荷泵的充/放电电流失配低于1%。  相似文献   

8.
本文基于0.18μm CMOS工艺设计并实现了一种新的高性能电荷泵电路。采用宽输入范围的轨到轨运算放大器和自偏置共源共栅电流镜技术提高了电荷泵在宽输出电压范围内的电流匹配精度;同时,提出通过增加预充电电流源技术来提高电荷泵的初始充电电流,以缩短CPPLLs的建立时间。测试结果表明电荷泵在0.4~1.7V输出电压范围内失配电流小于0.4%,充电电流为100μA,预充电电流为70μA。在1.8V电源电压下,电荷泵电路锁定时的平均功耗为0.9mW。  相似文献   

9.
薛红  李智群  王志功  李伟  章丽 《半导体学报》2007,28(12):1988-1992
用TSMC0.18μm CMOS工艺设计并实现了一种电荷泵电路,传统的电荷泵电路中充放电电流有较大的电流失配,电流失配导致相位偏差,从而引起杂散并降低了锁相环的锁定范围,文中采用与电源无关的基准电流源电路,运用运算放大器和自偏置高摆幅共源共栅电流镜电路实现了充放电电流的高度匹配,从而降低了杂散。测试结果表明:电源电压1.8V时,电荷泵电流为0.475mA,在0.3-1.6V输出电压范围内电流失配小于10mA,功耗为6.8mW。  相似文献   

10.
用TSMC 0.18μm CMOS工艺设计并实现了一种电荷泵电路.传统的电荷泵电路中充放电电流有较大的电流失配,电流失配导致相位偏差,从而引起杂散并降低了锁相环的锁定范围.文中采用与电源无关的基准电流源电路,运用运算放大器和自偏置高摆幅共源共栅电流镜电路实现了充放电电流的高度匹配,从而降低了杂散.测试结果表明:电源电压1.8V时,电荷泵电流为0.475mA,在0.3~1.6V输出电压范围内电流失配小于10mA,功耗为6.8mW.  相似文献   

11.
This paper presents a novel organization of switch capacitor charge pump circuits based on voltage doubler structures. Each voltage doubler takes a DC input and outputs a doubled DC voltage. By cascading voltage doublers the output voltage increases up to 2 times. A two-phase voltage doubler and a multiphase voltage doubler structures are discussed and design considerations are presented. A simulator working in the Q-V realm was used for simplified circuit level simulation. In order to evaluate the power delivered by a charge pump, a resistive load is attached to the output of the charge pump and an equivalent capacitance is evaluated. To avoid the short circuit during switching, a clock pair generator is used to achieve multi-phase non-overlapping clock pairs. This paper also identifies optimum loading conditions for different configurations of the charge pumps. The proposed charge-pump circuit is designed and simulated by SPICE with TSMC 0.35-μm CMOS technology and operates with a 2.7 to 3.6 V supply voltage. It has an area of 0.4 mm2; it was designed with a frequency regulation of 1 MHz and internal current mode to reduce power consumption.  相似文献   

12.
设计了一种集成在DC DC芯片中的电荷泵锁相环。其中鉴频鉴相器(PFD)在传统的D触发器结构的基础上增加了复位延迟电路的延迟时间,减小了鉴相“死区”;电荷泵采用充放电电流对称的源极开关结构,解决了电流失配和电荷注入作用的影响;另外,设计了一种可编程的由D触发器构成的分频器电路。基于CMOS工艺,采用Cadence仿真软件对其进行仿真,结果表明该电荷泵锁相环在锁定时间、频率范围、相位抖动等方面均达到了指定的性能需求,且工作特性较好。其性能指标是:电源电压2.4 V,频率调节范围250~750 kHz,锁定时间<50 μs,相位抖动<30 ns。  相似文献   

13.
A new charge pump circuit has been proposed to suppress the return-back leakage current without suffering the gate-oxide reliability problem in low-voltage CMOS process. The four-phase clocks were used to control the charge-transfer devices turning on and turning off alternately to suppress the return-back leakage current. A test chip has been implemented in a 65-nm CMOS process to verify the proposed charge pump circuit with four pumping stages. The measured output voltage is around 8.8 V with 1.8-V supply voltage to drive a capacitive output load, which is better than the conventional charge pump circuit with the same pumping stages. By reducing the return-back leakage current and without suffering gate-oxide overstress problem, the new proposed charge pump circuit is suitable for applications in low-voltage CMOS IC products.  相似文献   

14.
A high efficiency charge pump circuit is designed and realized. The charge transfer switch is biased by the additional capacitor and transistor to eliminate the influence of the threshold voltage. Moreover, the bulk of the switch transistor is dynamically biased so that the threshold voltage gets lower when it is turned on during charge transfer and gets higher when it is turned off. As a result, the efficiency of the charge pump circuit can be improved. A test chip has been implemented in a 0.18 μm 3.3 V standard CMOS process. The measured output voltage of the eight-pumping-stage charge pump is 9.8 V with each pumping capacitor of 0.5 pF at an output current of 0.18 μA, when the clock frequency is 780 kHz and the supply voltage is 2 V. The charge pump and the clock driver consume a total current of 2.9 μA from the power supply. This circuit is suitable for low power applications.  相似文献   

15.
由于存在逆向电流,利用电流传输开关特性的改进型的电压泵(NCP-1)的电压增益被大大减弱.本论文提供了一个新的方法.通过使用双阈值电压CMOS代替单阈值电压CMOS,不但消除了逆向电流,而且对低电压有很好的放大增益.PSPICE模拟结果,当电源电压为0.5V时,6级电压泵可使输出电压放大到2.68V.  相似文献   

16.
MEMS麦克风需要一个高于10 V的偏置电压才能工作,这个高电压一般由内部电荷泵电路产生.在传统Dickson电荷泵结构的基础上,提出一种改进的电荷泵结构.它首先将非重叠时钟的幅度加倍,然后用幅度加倍的时钟作为电荷泵的驱动时钟,取得了明显的升压效果.Hspice仿真结果表明,电源电压为1.4V时,6级二极管-电容升压单元就可以实现10.7674 V的输出电压.与传统的Dickson升压电路相比,改进型电荷泵的升压单元减少了4级,且其核心部分的面积减小了21%,功耗降低了40%(参考SMIC 0.35 μm CMOS工艺).  相似文献   

17.
A BiCMOS logic circuit with very small input capacitance has been developed, which operates at low supply voltages. A High-beta BiCMOS (Hβ-BiCMOS) gate circuit which fully utilizes the bipolar transistor features achieves 10 times the speed of a CMOS gate circuit with the same input capacitance and operating at 3.3 V supply voltage. In order to lower the minimum supply voltage of Hβ-BiCMOS, a BiCMOS circuit configuration using a charge pump to pull up the output high level of the BiCMOS gate circuit is proposed. By introducing a BiCMOS charge pump, Hβ-BiCMOS achieves very high speed operation at sub-2.0 V supply voltage. It has also been demonstrated that only a very small number of charge pump circuits are required to drive a large number of Hβ-BiCMOS gate circuits  相似文献   

18.
基于SMIC 40 nm CMOS工艺,提出了一种改进型电荷泵电路。在传统电荷泵锁相环中,电荷泵存在较大的电流失配,导致锁相环产生参考杂散,使锁相环输出噪声性能恶化。设计的电荷泵电路在电流源处引入反馈,降低了电流失配。仿真结果表明,在供电电压为1.1 V,电荷泵充放电电流为0.1 mA,输出电压在0.3~0.7 V范围变化时,电荷泵的电流失配率小于0.83 %,锁相环的输出参考杂散为-65.5 dBc。  相似文献   

19.
A new high performance charge pump circuit is designed and realized in 0.18μm CMOS process. A wide input ranged rail-to-rail operational amplifier and self-biasing cascode current mirror are used to enable the charge pump current to be well matched in a wide output voltage range.Furthermore,a method of adding a precharging current source is proposed to increase the initial charge current,which will speed up the settling time of CPPLLs.Test results show that the current mismatching can be less than 0.4%in the output voltage range of 0.4 to 1.7 V,with a charge pump current of 100μA and a precharging current of 70μA.The average power consumption of the charge pump in the locked condition is around 0.9 mW under a 1.8 V supply voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号