首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
The foaming performance of 1-tetradecyl-3-methylimidazolium bromide (C14mimBr) aqueous solution, in the presence of polymers (PEG or PVA) or inorganic salts (NaBr, MgCl2, NaNO3, Na2SO4 or Na3PO4), was investigated at 25.0?°C by using the self-made apparatus and the conductivity method. The experimental results show that the foaming ability and foam stability of the ternary aqueous systems of C14mimBr coexisting with PEG or PVA are stronger than those of the C14mimBr solutions in the absence of a polymer, and both the efficiency of foaming ability and foam stability of the surfactant solutions are evidently enhanced with an increase in polymer concentration. However, the addition of inorganic salts can decrease the foaming ability and foam stability of C14mimBr solution. Especially, the inorganic salts, with high valence state of the anion (SO4 2? and PO4 3?), are good antifoam agents which can remove and inhibit foam quickly. For the aqueous solution of the surfactant, the effect of temperature on foaming properties was also examined. The results show that both the foaming ability and stability of the foams of the surfactant solutions decrease with an increase in the temperature within the range from 25.0 to 45.0?°C.  相似文献   

2.
A new kind of polymer surfactant, noncovalent binding between N,N‐dimethyl‐dodecylamine and alginate (C12A‐Alg), was successfully prepared by mixing N,N‐dimethyl‐dodecylamine (C12A) and sodium alginate (NaAlg) in the appropriate mole ratio and bubbling CO2. C12A was successfully grafted onto the alginate molecule by electrostatic interaction. The structure of C12A‐Alg was confirmed by Fourier transform infrared and NMR spectroscopies. The polymer surfactant C12A‐Alg has superior performance in foamability and emulsification. This foaming/defoaming and emulsification/demulsification behavior can be triggered by bubbling CO2/N2, demonstrating that the polymer surfactant C12A‐Alg is switchable. © 2018 Society of Chemical Industry  相似文献   

3.
Natural gas foam can be used for mobility control and channel blocking during natural gas injection for enhanced oil recovery, in which stable foams need to be used at high reservoir temperature, high pressure and high water salinity conditions in field applications. In this study, the performance of methane (CH4) foams stabilized by different types of surfactants was tested using a high pressure and high temperature foam meter for surfactant screening and selection, including anionic surfactant (sodium dodecyl sulfate), non-anionic surfactant (alkyl polyglycoside), zwitterionic surfactant (dodecyl dimethyl betaine) and cationic surfactant (dodecyl trimethyl ammonium chloride), and the results show that CH4-SDS foam has much better performance than that of the other three surfactants. The influences of gas types (CH4, N2, and CO2), surfactant concentration, temperature (up to 110°C), pressure (up to 12.0 MPa), and the presence of polymers as foam stabilizer on foam performance was also evaluated using SDS surfactant. The experimental results show that the stability of CH4 foam is better than that of CO2 foam, while N2 foam is the most stable, and CO2 foam has the largest foam volume, which can be attributed to the strong interactions between CO2 molecules with H2O. The foaming ability and foam stability increase with the increase of the SDS concentration up to 1.0 wt% (0.035 mol/L), but a further increase of the surfactant concentration has a negative effect. The high temperature can greatly reduce the stability of CH4-SDS foam, while the foaming ability and foam stability can be significantly enhanced at high pressure. The addition of a small amount of polyacrylamide as a foam stabilizer can significantly increase the viscosity of the bulk solution and improve the foam stability, and the higher the molecular weight of the polymer, the higher viscosity of the foam liquid film, the better foam performance.  相似文献   

4.
A type of switchable tertiary amine Gemini surfactant, N,N′‐di(N,N‐dimethyl propylamine)‐N,N′‐didodecyl ethylenediamine, was synthesized by two substitution reactions with 3‐chloro‐1‐(N,N‐dimethyl) propylamine, bromododecane and ethylene diamine as main raw materials. The structure of the product was characterized by FTIR and 1H‐NMR. We also investigated the surface tension when CO2 was bubbled in different concentrations of surfactant solution and the influence of different CO2 volumes on surface tension under a constant surfactant concentration. Finally the surface tension curve and the related parameters were acquired by surface tension measurements. The experimental results showed that the structure of the synthesized compounds were in conformity with the expected structure of the surfactant, and displayed a better surface activity after bubbling CO2. The critical micelle concentration (CMC) surface tension at CMC (γcmc) pC20 (negative logarithm of the surfactant's molar concentration C20, required to reduce the surface tension by 20 mN/m) surface excess (Γmax) at air/solution interface and the minimum area per surfactant molecule at the air/solution interface (Amin) were determined. Results indicate that the target product had good surface activity after bubbling CO2.  相似文献   

5.
Yutao Liu 《Drying Technology》2017,35(13):1619-1628
To overcome the problem of moisture re-adsorption of dried lignite with common evaporation drying methods, a set of linear alkyl quaternary ammonium surfactants (C10TAB, C12TAB, and C16TAB) were used to modify lignite surface, and the effects of alkyl chain length on the adsorption characteristics of surfactants and wettability of lignite surface were evaluated. Pseudo-first and pseudo-second-order kinetic models and Langmuir model were, respectively, used to simulate adsorption kinetics and adsorption isotherms. The results showed that three surfactants gradually formed double-layer adsorption on lignite surface and the loading of surfactant increased with the length of alkyl chain. X-ray photoelectron spectroscopy analysis showed that C3H9N+ moiety of the surfactants would preferentially interact with O?C?O groups of lignite. Results of wetting heating and moisture re-adsorption showed that three surfactants obviously decreased hydrophilicity and restrained moisture re-adsorption of lignite, but with the formation of double-layer adsorption, hydrophilic headgroups of surfactant faced outward, which caused increase in hydrophilicity of lignite. As a result of two opposite effects of surfactant chain length on lignite wettability, the effect of C12TAB on decreasing hydrophilicity was the best among the three chosen surfactants.  相似文献   

6.
The influence of CnTAB cationic surfactant chain length (n = 8, 10, and 12) on the reaction rate of zinc powder and 0.1 M HCl hydrochloric acid in aqueous solutions was determined at room temperature. Solutions of single surfactants consisting of dodecyl, decyl, and octyl-trimethyl-ammonium bromide surfactants CnTAB were prepared at room temperature. From the surface tension and conductivity measurements, the critical micelle concentration (CMC) values of the three surfactants were obtained in the presence and absence of the acid. No significant change was observed for CMC values in pure water and in 0.01 M HCl. Adsorption of CnTAB surfactants onto 1% wt./vol zinc (in powder form), using surface tension measurements, was then investigated. The adsorption tendency of CnTAB surfactants onto zinc powder followed the order: C8TAB > C10TAB > C12TAB. The role of surfactants in the reaction rate between zinc powder and 0.1 M M HCl was then investigated using conductivity measurements. A significant difference in the reaction rate was found depending on the surfactant chain length. Reaction times of 3830, 4963, 14,172, and 20,053 s were found for the zinc reaction with (0.1 M HCl), (0.1 M HCl + 40 mM C8TAB), (0.1 M HCl + 40 mM C10TAB), and (0.1 M HCl + 40 mM C12TAB), respectively, suggesting a significant dependency of the reaction rate on the CnTAB chain length. Finally, some corrosion parameters such as the corrosion rate, corrosion inhibition efficiency, and their dependency on CnTAB chain length were presented and discussed.  相似文献   

7.
Ultralight Si3N4 ceramic foams have been successfully prepared through particle‐stabilized foams method, which is based on the adsorption of in situ hydrophobized Si3N4 particles to the liquid/air interface of the foams. Here, we firstly used a long‐chain surfactant cetyltrimethylammonium chloride to render the Si3N4 particles partially hydrophobic. By tailoring the surfactant concentration and pH values of the suspensions, the wet foams were stabilized to avoid coarsening and coalescence. SEM results show that the Si3N4 ceramic foams possess single strut walls with elongated β‐Si3N4 grains interlocking with each other, and their pores are uniform with an average pore size of 95 μm. The obtained ceramic foams maintain compressive strength of 1.34 ± 0.13 MPa with porosity of 92.0%, when the suspension contains 3 mmol/L surfactant at the pH of 11.0.  相似文献   

8.
To develop a mild, effective, and clean strategy for recovery and recycling of anionic surfactants in CO2/N2‐switchable emulsions, a CO2/N2‐switchable anionic surfactant, which is a combination of dodecyl seleninic acid (DSA) and N,N,N′,N′‐tetramethyl‐1,2‐ethylenediamine (TMEDA), here referred to as DSA–TMEDA, was used to stabilize an oil‐in‐water (O/W) emulsion. Upon stimulation with CO2, DSA–TMEDA was switched off to form insoluble DSA and the water‐soluble TMEDA bicarbonate. Upon N2 bubbling and heating, the OFF state of DSA–TMEDA was restored to the surfactant of DSA–TMEDA. In this manner, O/W emulsions stabilized by DSA–TMEDA can be switched reversibly between demulsification (phase separation) and re‐emulsification (recovered emulsion) by triggering with CO2/N2 over ten times. After breakage of the emulsion, nearly all of the OFF state surfactant could be separated conveniently away from the oil phase, thus facilitating recovery and recycling of the surfactant afterward in emulsifying oil. No obvious adverse changes in the dispersed oil particles size and the relative stability of the regenerated emulsions were observed over five cycles, and the surfactant loss can be neglected during the recycling.  相似文献   

9.
Extrusion foaming using supercritical carbon dioxide (CO2) as the blowing agent is an economically and environmentally benign process. However, it is difficult to control the foam morphology and maintain its high thermal insulation comparing to the conventional foams based on fluorocarbon blowing agents. In this study, we demonstrated that polystyrene (PS) foams with the bimodal cell morphology can be produced in the extrusion foaming process using CO2 and water as co-blowing agents and two particulate additives as nucleation agents. One particulate is able to decrease the water foaming time so both CO2 and water can induce foaming simultaneously, while the other increases the CO2 nucleation rate with little effect on the CO2 foaming time. Our experimental results showed that a dual particulate combination of nanoclay and activated carbon provided the best bimodal structure. The bimodal foams exhibited much better compressive properties and slightly better thermal insulation for PS foams.  相似文献   

10.
To explore a new blowing agent for polyurethanes (PUs), palmitic acid was grafted onto a branched polyethyleneimine (bPEI; weight‐average molecular weight = 25,000 Da) via N,N′‐carbonyldiimidazole condensation to form a hydrophobically modified bPEI [palmitic acid grafted branched polyethyleneimine (C16–bPEI)] with a grafting rate of 12%. A CO2 adduct of C16–bPEI, which trapped 16.8% CO2 in it, was synthesized from C16–bPEI. The long alkyl chain grafting improved the dispersibility of the CO2 adduct in the PU raw materials and favored a homogeneous release of CO2 to blow PUs during the exothermic foaming process. The preliminary results show that the foams possessed a density of 72.0 kg/m3 and a compressive strength of 246 kPa; this matched the required values of foams for the thermal insulation of underground steel pipes. This new blowing agent emitted nothing but CO2 to the atmosphere, so it will not promote ozone depletion and will avoid global warming problems that are associated with traditional blowing agents such as chlorofluorocarbons and hydrochloroflourocarbons. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43874.  相似文献   

11.
Laboratory experiments were conducted to determine the effect of oil viscosity on the oil-recovery efficiency in porous media. The pure surfactants (i.e., sodium dodecyl sulfate and various alkyl alcohols) were selected to correlate the molecular and surface properties of foaming solutions with viscosity, and the recovery of oil. Oil-displacement efficiency was measured by water, surfactant-solution and foam-flooding processes, which included 2 types of foams (i.e., air foam and steam foam). A significant increase in heavy-oil recovery was observed by steam foam flooding compared with that by air foam flooding, whereas for light oils, the steam foam and air foam produced about the same oil recovery. An attempt was made to correlate the chain-length compatibility with the surface properties of the foaming agents and oil-recovery efficiency in porous media. For mixed foaming systems (C12 SO4 Na + Cn H2n+1 OH), a minimum in surface tension, a maximum in surface viscosity, a minimum in bubble size and a maximum in oil recovery were observed when both components of the foaming system had the same chain length. These results were explained on the basis of thermal motions (i.e., vibrational, rotational and oscillational) and the molecular packing of surfactants at the gas-liquid interface. The effects of chain-length compatibility and the surface properties of mixed surfactants are relevant to the design of surfactant formulations for oil recovery under given reservoir conditions.  相似文献   

12.
This paper aims at elucidating some important parameters affecting the cellular morphology of poly(styrene-co-acrylonitrile) (SAN)/clay nanocomposite foams prepared with the supercritical CO2 technology. Prior to foaming experiments, the SAN/CO2 system has first been studied. The effect of nanoclay on CO2 sorption/desorption rate into/from SAN is assessed with a gravimetric method. Ideal saturation conditions are then deduced in view of the foaming process. Nanocomposites foaming has first been performed with the one-step foaming process, also called depressurization foaming. Foams with different cellular morphology have been obtained depending on nanoclay dispersion level and foaming conditions. While foaming at low temperature (40 °C) leads to foams with the highest cell density (∼1012-1014 cells/cm3), the foam expansion is restricted (d∼0.7-0.8 g/cm3). This drawback has been overcome with the use of the two-step foaming process, also called solid-state foaming, where foam expansion occurs during sample dipping in a hot oil bath (d∼0.1-0.5 g/cm3). Different foaming parameters have been varied, and some schemes have been drawn to summarize the characteristics of the foams prepared - cell size, cell density, foam density - depending on both the foaming conditions and nanoclay addition. This result thus illustrates the huge flexibility of the supercritical CO2 batch foaming process for tuning the foam cellular morphology.  相似文献   

13.
We previously explored a series of CO2 adducts from alkylated polyethylenimines with C4 to C16 alkyl side chains, serving as climate-friendly blowing agents for polyurethanes (PUs). Among them, the polyethylenimine with C8 alkyl (2-ethylhexyl) side chains demonstrated the highest foaming efficiency. In this study, we further changed the grafting rate of the C8 alkyl, from 7 to 16%, and investigated the effects of the resulting blowing agents on the foaming process. For both foaming systems containing a castor oil-derived polyol (Polycin T-400) or a poly(propylene glycol) polyol (Polyether 4110), the CO2 adducts with a grafting rate of 13% displayed the best foaming performance in terms of high dispersibility in the foaming systems, homogenous cellular morphology, and good mechanical properties. Moreover, the 13%-C8-alkylated blowing agent demonstrated high suitability for the foaming systems from biomass-sourced polyols (like Polycin T-400). Therefore, the optimized CO2-adduct blowing agent could replace the currently used climate-changing hydrochlorofluorocarbons and hydrofluorocarbons, as well as might contribute to the development of future renewable PU foams. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48752.  相似文献   

14.
A new group of anionic surfactants, namely sodium salts of secondary alkanesulfonamidoacetic acid, were synthesized using n-alkanesulfonyl chlorides as starting materials. These surfactants, having the formula: R–SO2–NH–CH2–COONa, with R = C12, C14, C16 and C18, were obtained in a simple way with quantitative yields. Different chain lengths and positional isomers of this new type of surfactants are expected to present differences in surface properties and foamability. The surface properties including critical micelle concentrations and minimal surface tensions γmin were determined for each prepared surfactant using surface tension measurements with a Wilhelmy plate. Surface excess and minimum area per molecule at the air–water interface were determined for different concentrations at 25 and 50 °C using the Gibbs equation. The foaming power was also determined by the Bartsch method, and the results obtained were compared to those of a commercial surfactant, the linear alkylbenzenesulfonate. The stability of the foam formed was also evaluated. As expected, these surfactants exhibit good surface properties and show good foaming power.  相似文献   

15.
Novel poly(aryl ether nitrile ketone) foams were prepared through the batch foaming method with supercritical CO2 as the blowing agent. Both temperature‐induced and pressure‐induced foaming methods were conducted to examine the influence of nitrile groups on the foaming result. The results indicated that nitrile groups influenced the foaming result by affecting both the viscoelasticity and CO2 absorption of the polymers. In addition, the CO2 solubility of the polymers increased with increasing CN content presumably because of the Lewis acid–base nature of the interaction between the CO2 molecules and the nitrile groups. The cell growth process was assessed by analyzing the influence of foaming temperature and foaming time on the cell morphology. Nanocellular foams with a minimum size of 30–50 nm were achieved by the temperature‐induced foaming method. Moreover, highly expanded foams with a maximum expansion ratio of 23.6 were obtained by the pressure‐induced foaming method. © 2018 Society of Chemical Industry  相似文献   

16.
The non-isothermal crystallization behaviors of isotactic polypropylene (iPP) under ambient N2 and compressed CO2 (5–50 bar) at cooling rates of 0.2–5.0 °C/min were carefully studied using high-pressure differential scanning calorimeter. The presence of compressed CO2 had strong plasticization effect on the iPP matrix and retarded the formation of critical size nuclei, which effectively postponed the crystallization peak to lower temperature region. On the basis of these findings, a new foaming strategy was utilized to fabricate iPP foams using the ordinary unmodified linear iPP with supercritical CO2 as the foaming agent. The foaming temperature range of this strategy was determined to be as wide as 40 °C and the upper and lower temperature limits were 155 and 105 °C, which were determined by the melt strength and crystallization temperature of the iPP specimen under supercritical CO2, respectively. Due to the acute depression of CO2 solubility in the iPP matrix during the foaming process, the iPP foams with the bi-modal cell structure were fabricated.  相似文献   

17.
The mixed surfactants were successfully applied to fabricate the highly porous Si3N4 ceramic foams by the direct foaming method. The oppositely charged surfactants mixed in slurries could combined into catanionic surfactant by the electrostatic attraction and facilitate the formation of ultra-stable foams. The microstructure of the Si3N4 ceramic foams, including pore structure, mean pore size, pore size distribution and porosity were tailored by varying the mixing ratio of surfactant, mixed surfactants concentration and solid content of the initial slurries. Si3N4 ceramic foams with porosity of 92%-97%, mean pore size of 140-240 µm and compressive strength of 0.85-5.38 MPa were obtained by adjusting mixed surfactants between 0.1 and 0.4 wt% and solid content between 22 and 30 vol%. The compressive strength of Si3N4 ceramic foams in current work was much higher than most reported results.  相似文献   

18.
Reinforcing the cavity cell walls of polymer foams using nanoparticles can offer a new era for the property‐structure‐processing field in the development of functionalized ultra‐light components and devices manufactured from foam. When the nanoparticles are exfoliated in polymers, the viscosity substantially increases and thus mixing or foaming usually becomes almost impossible. We use CO2 supercritical fluid (CO2 SCF) for the mixing and foaming of poly(ethylene‐vinyl acetate) copolymer (EVA) with montmorillonite (MMT) nanoplatelets. The in situ evaporation of CO2 induces robust cavity cells of the EVA/MMT nanocomposite foam in a stable form of spherical shapes, which are seldom achieved by other methods. As the bubble grows and becomes stabilized in CO2 SCF, the exfoliated MMT nanoparticles are aligned at the cell walls by the Gibbs adsorption principle to minimize the surface energy at the gas–liquid interface and increase the rupture strength of the cavity walls. It is demonstrated that the developed methodology can be successfully used for foaming EVA containing high vinyl acetate (VA) content (>40%). Since EVA is too soft to construct cell walls of foam using conventional methods, the applicability of the developed methodology is extensively broadened for superior adhesion and compatibility with other materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46615.  相似文献   

19.
Open cell aluminum (Al) foams are developed in this work by a novel direct foaming process in which a low concentrated alkane phase is emulsified in a stabilized Al powder suspension. In this versatile technique, the porosity parameters are adjusted during foaming of the emulsified suspensions and the final stability is achieved by a thermal treatment above the melting temperature of Al. The thin oxide layers surrounding the Al particles and the ascertained percolation of the molten metal are essential in this stage. The efficiency of the processing route is demonstrated with the essential requisites for successful foaming and the final structural stability. Furthermore, open cell Al-foams/zeolite composites exhibiting a hierarchical porous structure (nano- and macroscale) are produced by hydrothermal synthesis of Faujasite-like zeolite on the surface of the developed Al-foams. Due to the advantageous properties of zeolite X in N2 adsorption, the application of the composites for separation of N2 from air is specially envisaged.  相似文献   

20.
Closed-cell polycarbonate foams were prepared using a two-step foaming process, which consisted of the initial dissolution of supercritical CO2 (scCO2) into PC foaming precursors and their later expansion by heating using a double contact restriction method. The effects of the parameters of both CO2 dissolution and heating stages on the cellular structure characteristics as well as on the physical aging of PC in the obtained foams were investigated. A higher amount of CO2 was dissolved in PC with increasing the dissolution temperature from 80 to 100 °C, with similar CO2 desorption trends and diffusion coefficients being found for both conditions. PC foams displayed an isotropic-like microcellular structure at a dissolution temperature of 80 °C. It was shown that it is possible to reduce their density while keeping their microcellular structure with increasing the heating time. On contrary, when dissolving CO2 at 100 °C and later expanding, PC foams presented a cellular morphology with bigger cells and with an increasingly higher cell elongation in the vertical growth direction with increasing the heating time. Comparatively, PC foams obtained by dissolving CO2 at 100 °C presented a more marked physical aging after CO2 dissolution and foaming, although this effect could be reduced and ultimately suppressed with increasing the heating time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号