首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Healthy term infants (n = 244) were randomized to receive: (1) control, soy-based formula without supplementation or (2) docosahexaenoic acid−arachidonic acid (DHA + ARA), soy-based formula supplemented with at least 17 mg DHA/100 kcal (from algal oil) and 34 mg ARA/100 kcal (from fungal oil) in a double-blind, parallel group trial to evaluate safety, benefits, and growth from 14 to 120 days of age. Anthropometric measurements were taken at 14, 30, 60, 90, and 120 days of age and 24-h dietary and tolerance recall were recorded at 30, 60, 90, and 120 days of age. Adverse events were recorded throughout the study. Blood samples were drawn from subsets of 25 infants in each group. Capillary column gas chromatography was used to analyze the percentages of fatty acids in red blood cell (RBC) lipids and plasma phospholipids. Compared with the control group, percentages of fatty acids such as DHA and ARA in total RBC and plasma phospholipids were significantly higher in infants in the DHA + ARA group at 120 days of age (P < 0.001). Growth rates did not differ significantly between feeding groups at any assessed time point. Supplementation did not affect the tolerance of formula or the incidence of adverse events. Feeding healthy term infants soy-based formula supplemented with DHA and ARA from single cell oil sources at concentrations similar to human milk significantly increased circulating levels of DHA and ARA when compared with the control group. Both formulas supported normal growth and were well tolerated.  相似文献   

2.
The long-chain n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a crucial role in health, but previous National Health and Nutrition Examination Survey (NHANES) analyses have shown that EPA and DHA intake in the United States is far below recommendations (~250–500 mg/day EPA + DHA). Less is known about docosapentaenoic acid (DPA), the metabolic intermediate of EPA and DHA; however, evidence suggests DPA may be an important contributor to long-chain n-3 fatty acid intake and impart unique benefits. We used NHANES 2003–2014 data (n = 45,347) to assess DPA intake and plasma concentrations, as well as the relationship between intake and plasma concentrations of EPA, DPA, and DHA. Mean DPA intake was 22.3 ± 0.8 mg/day from 2013 to 2014, and increased significantly over time (p < 0.001), with the lowest values from 2003 to 2004 (16.2 ± 1.2 mg/day). DPA intake was higher in adults (20–55 years) and seniors (55+ years) compared to younger individuals. In regression analyses, DPA intake was a significant predictor of plasma EPA (β = 138.5; p < 0.001) and DHA (β = 318.9; p < 0.001). Plasma DPA was predicted by EPA and DHA intake (β = 13.15; p = 0.001 and β = 7.4; p = 0.002), but not dietary DPA (p = 0.3). This indicates that DPA intake is not a good marker of plasma DPA status (or vice versa), and further research is needed to understand the factors that affect the interconversion of EPA and DPA. These findings have implications for future long-chain n-3 fatty acids dietary recommendations.  相似文献   

3.
In rhesus monkeys, maternal n-3 fatty acid deficiency during pregnancy produces infant monkeys deficient in n-3 fatty acids at birth. These results stimulated current experiments to find out if n-3 fatty acids from fish in the diets of pregnant women would influence the concentration of docosahexaenoic acid (DHA, 22:6 n-3) in the newborn human infant. Fifteen healthy pregnant women were enrolled to receive a 9-wk dietary supplementation of n-3 fatty acids from the 26th to the 35th wk of pregnancy. Sixteen pregnant women were not supplemented and served as controls. n-3 Fatty acid supplementation consisted of sardines and additional fish oil, which provided a total of 2.6 g of n-3 fatty acids per day (d) for the 9-wk period of supplementation. This included 1.01 g DHA. The end point of this study was the blood concentrations of DHA in the newborn infant. DHA in maternal red blood cells increased from 4.69% of total fatty acids to 7.15% at the end of the supplement period and at the time of delivery decreased (as expected) to 5.97% of total fatty acids. Maternal plasma showed a similar change from 2.12 to 3.51% of total fatty acids and then decreased to 2.35%. Levels of DHA in plasma and red blood cells of unsupplemented mothers did not change during the same time period. Levels of DHA in blood of newborn infants differed greatly in infants born from n-3-supplemented mothers compared with control infants. In red blood cells, DHA was 7.92% of total fatty acids compared with 5.86% (control infants). Plasma values showed a similar difference: 5.05% vs. 3.47% (controls). In n-3-supplemented infants, DHA concentrations were 35.2% higher than in control infants in red blood cells and 45.5% higher in plasma. These data indicate the importance of maternal dietary n-3 fatty acids and, in particular, maternal dietary DHA in promoting higher concentrations of DHA in the blood of the newborn infant.  相似文献   

4.
Stark KD 《Lipids》2008,43(1):45-53
A blood biomarker of omega-3 fatty acid intake and tissue status could serve as a modifiable risk factor for cardiovascular disease. The percentage of omega-3 highly unsaturated fatty acid (HUFA ≥ 20 carbons and ≥3 double bonds) in the total HUFA pool (the n-3 HUFA score) was examined as a potential blood biomarker of omega-3 fatty acids in tissues. The fatty acid composition of total lipid extracts (TLE) and phospholipid (PL) fractions were determined for plasma and erythrocytes samples of human subjects (n = 20) and the n-3 HUFA score and the sum of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were compared. Omega-3 fatty acids in blood and tissues of rats (n = 31) and pigs (n = 48) were also determined and the associations were compared. The n-3 HUFA score is more consistent across plasma and erythrocytes, with strong correlations between TLE and PL in plasma (r = 0.93) and erythrocytes (r = 0.94). The n-3 HUFA score was less variable and blood levels correlated strongly with various animal tissues. The n-3 HUFA score is a useful blood biomarker that does not require the isolation of the PL class thereby supporting high throughput analyses. The strength of association between the n-3 HUFA score and disease risk needs to be examined.  相似文献   

5.
An infant formula fat analog with capric acid mostly esterified at the sn‐1,3 positions, and substantial amounts of palmitic, docosahexaenoic (DHA), and arachidonic (ARA) acids at the sn‐2 position, was prepared by physically blending enzymatically synthesized structured lipids (SL) with vegetable oils. The components of the blend included high sn‐2 palmitic acid SL enriched with capric acid (SLCA), canola oil (CAO), corn oil (CO), high sn‐2 DHA (DHAOm), and high sn‐2 ARA (ARAOm) enzymatically modified oils. Each component was proportionally blended to match the fatty acid profile of commercial fat blends used for infant formula. The infant formula fat analog (IFFA1) was characterized for total and positional fatty acids (FA), triacylglycerol (TAG) molecular species, thermal behavior, and tocopherol content. IFFA1 contained 17.37 mol% total palmitic acid of which nearly 35 % was located at the sn‐2 position. The total capric acid content was 13.93 mol%. The content of DHA and ARA were 0.49 mol% (48.18 % at sn‐2) and 0.57 mol% (35.80 % at sn‐2), respectively. The predominant TAG were OPO (24.09 %), POP (15.70 %), OOO (11.53 %), and CLC (7.79 %). The melting completion and crystallization onset temperatures were 18.65 and ?2.19 °C, respectively. The total tocopherol content was 566.45 μg/g. This product might be suitable for commercial production of infant formulas.  相似文献   

6.
Docosahexaenoic acid (DHA, 22∶6n-3) and arachidonic acid (AA, 20∶4n-6) serve important roles in perinatal visual and neural development. A neonatal pig model was used to determine if dietary supplementation with DHA and AA at slightly greater concentrations than normally found in human milk would influence fatty acid accretion in retina. One-day-old piglets were assigned to one of four diets (n=5/group): (i) STD, standard diet containing fat similar to infant formula; (ii) STD+DHA, 0.7% of fatty acids as DHA; (iii) STD+AA, 0.9% as AA; and (iv) STD+BOTH, 0.8% as DHA plus 1.0% as AA. After 25 d, fatty acids in retina phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were determined. Supplementation with DHA resulted in approximately twofold increases (P<0.05) in PC-DHA (4.88% in STD vs. 10.03% in STD+DHA and 9.47% in STD+BOTH). Similarly, AA supplementation increased PC-AA 1.3–1.4-fold (4.47% in STD vs. 6.19% in STD+AA and 5.70% in STD+BOTH). For PE, supplementation with either fatty acid or in combination resulted in no significant increases, except for a 1.2-fold increase in DHA for STD+BOTH (32.66%) vs. STD (28.38%). Thus, PC responded to dietary supplementation, with addition of DHA, AA, or BOTH, resulting in increases in respective fatty acids; PE was less responsive, with only STD+BOTH resulting in increased DHA. No significant competition between DHA and AA in incorporation into phospholipids was observed. In conclusion, consumption of a combination of DHA and AA by neonatal pigs supported accretion of DHA in retina phospholipids, while simultaneously supplying the AA necessary for membrane phospholipids and eicosanoid biosynthesis. Based on a presentation at the AOCS Annual Meeting & Expo in San Antonio, Texas, May 7–11, 1995.  相似文献   

7.
We studied the fatty acid (FA) content and composition of ten zoobenthic species of several taxonomic groups from different freshwater bodies. Special attention was paid to essential polyunsaturated fatty acids, eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (ARA, 20:4n-6); and the n-3/n-6 and DHA/ARA ratios, which are important for consumers of higher trophic levels, i.e., fish. The content and ratios of these FA varied significantly in the studied zoobenthic species, consequently, the invertebrates were of different nutritional quality for fish. Eulimnogammarus viridis (Crustacea) and Dendrocoelopsis sp. (Turbellaria) had the highest nutrition value for fish concerning the content of EPA and DHA and n-3/n-6 and DHA/ARA ratios. Using canonical correspondence analysis we compared the FA profiles of species of the studied taxa taking into account their feeding strategies and habitats. We gained evidence that feeding strategy is of importance to determine fatty acid profiles of zoobenthic species. However, the phylogenetic position of the zoobenthic species is also responsible and may result in a similar fatty acid composition even if species or populations inhabit different water bodies or have different feeding strategies.  相似文献   

8.
There is little evidence as to the fatty acid composition of the cerebellum in infancy and it remains uncertain whether milk diet can influence its composition. We therefore examined cerebellar gray and white matter of infants less than 6 mon old who had died unexpectedly. The fatty acid content of 33 gray and 21 white matter specimens from infants born at term and 6 gray and 5 white matter specimens from pretern infants was assessed by gas chromatographic/mass spectrometric analysis. Infants were grouped according to whether they had received human or manufactured formula milk. Whereas cerebellar cortex docosahexaenoic acid (DHA, 22∶6n−3) concentrations were significantly lower (P<0.01) in the formula-fed than breast-fed infants, no differences existed between the term (n=10) and preterm (n=5) Scientific Milk Adaptation (SMA) formula-fed infants. Cerebellar white matter DHA concentrations were similarly lower (P<0.01) in the SMA formula-fed infants (n=8) than in an age-matched breast-fed group. Low concentrations of cerebellar white matter lignoceric (24∶0) and nervonic acid (24∶1n−9) in two 7-wk-old preterm infants appeared to correlated with postgestational rather than chronological age. Dietary long-chain polyunsaturated fatty acids particularly DHA, are probably essential for normal development of the infant cerebellum.  相似文献   

9.
The lipid and fatty acid compositions in the various organs (muscle, liver, other viscera) and stomach contents of three common herbivorous fish species in Japan, Siganus fuscescens, Calotomus japonicus and Kyphosus bigibbus, were examined to explore the stable 20:4n-6 (arachidonic acid, ARA) sources. Triacylglycerol (TAG), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) were the dominant lipid classes, while the major FA contents were 16:0, 18:1n-9, 16:1n-7, 14:0, 18:0, 18:1n-7, and some PUFA, including ARA, 20:5n-3 (eicosapentaenoic acid, EPA), 22:5n-3 (docosapentaenoic acid, DPA), and 22:6n-3 (docosahexaenoic acid, DHA). The amounts of these fatty acids were varied among species and their lipid classes. Phospholipids contained higher levels of PUFA than TAG. However, ARA in both phospholipids and TAG was markedly present in the muscle and viscera of all specimens, particularly in C. japonicus and K. bigibbus. Moreover, their ARA levels were higher than the levels of DHA and EPA. The observed high ARA level is unusual in marine fish and might be characteristic of herbivorous fish. Furthermore, ARA was the dominant PUFA in the stomach contents of the three species, suggesting that the high ARA level originated from their food sources. The above indicates that these three herbivorous fishes are ARA-rich marine foods and have potential utilization as stable ARA resources.  相似文献   

10.
Population-based data suggest that individuals who consume large dietary amounts of n-3 polyunsaturated fatty acids (PUFA) have lower odds of peripheral artery disease (PAD); however, clinical studies examining n-3 PUFA levels in patients with PAD are sparse. The objective of this study is to compare erythrocyte membrane fatty acid (FA) content between patients with PAD and controls. We conducted a cross-sectional study of 179 vascular surgery outpatients (controls, 34; PAD, 145). A blood sample was drawn and the erythrocyte FA content was assayed using capillary gas chromatography. We calculated the ratio of the n-3 PUFA eicosapentaenoic acid (EPA) to the n-6 PUFA arachidonic acid (ARA) as well as the omega-3 index (O3I), a measure of erythrocyte content of the n-3 PUFA, EPA, and docosahexaenoic acid (DHA), expressed as a percentage of total erythrocyte FA. Compared with controls, patients with PAD smoked more and were more likely to have hypertension and hyperlipidemia (p < 0.05). Patients with PAD had a lower mean O3I (5.0 ± 1.7% vs 6.0 ± 1.6%, p < 0.001) and EPA:ARA ratio (0.04 ± 0.02 vs 0.05 ± 0.05, p < 0.001), but greater mean total saturated fats (39.5 ± 2.5% vs 38.5 ± 2.6%, p = 0.01). After adjusting for several patient characteristics, comorbidities, and medications, an absolute decrease of 1% in the O3I was associated with 39% greater odds of PAD (odds ratio [OR] 1.39, 95% confidence interval [CI] 1.03–1.86, and p = 0.03). PAD was associated with a deficiency of erythrocyte n-3 PUFA, a lower EPA:ARA ratio, and greater mean total saturated fats. These alterations in FA content may be involved in the pathogenesis or development of poor outcomes in PAD.  相似文献   

11.
Recent studies suggest that dietary krill oil leads to higher omega-3 polyunsaturated fatty acids (n-3 PUFA) tissue accretion compared to fish oil because the former is rich in n-3 PUFA esterified as phospholipids (PL), while n-3 PUFA in fish oil are primarily esterified as triacylglycerols (TAG). Tissue accretion of the same dietary concentrations of PL- and TAG-docosahexaenoic acid (22:6n-3) (DHA) has not been compared and was the focus of this study. Mice (n = 12/group) were fed either a control diet or one of six DHA (1%, 2%, or 4%) as PL-DHA or TAG-DHA diets for 4 weeks. Compared with the control, DHA concentration in liver, adipose tissue (AT), heart, and eye, but not brain, were significantly higher in mice consuming either PL- or TAG-DHA, but there was no difference in DHA concentration in all tissues between the PL- or TAG-DHA forms. Consumption of PL- and TAG-DHA at all concentrations significantly elevated eicosapentaenoic acid (20:5n-3) (EPA) in all tissues when compared with the control group, while docoshexapentaenoic acid (22:5n-6) (DPA) was significantly higher in all tissues except for the eye and heart. Both DHA forms lowered total omega-6 polyunsaturated fatty acids (n-6 PUFA) in all tissues and total monounsaturated fatty acids (MUFA) in the liver and AT; total saturated fatty acid (SFA) were lowered in the liver but elevated in the AT. An increase in the DHA dose, independent of DHA forms, significantly lowered n-6 PUFA and significantly elevated n-3 PUFA concentration in all tissues. Our results do not support the claim that the PL form of n-3 PUFA leads to higher n-3 PUFA tissue accretion than their TAG form.  相似文献   

12.
The presence oftrans fatty acids in human milk may be a concern because of their possible adverse nutritional and physiological effects on the recipient infant. The mother's diet is the source of human milktrans fatty acids, and since these fatty acids are prevalent in many common foods of the Canadian diet, thetrans fatty acid content and the fatty acid composition of Canadian human milk were measured by gas-liquid chromatography coupled with silver nitrate-thin layer chromatography. In samples obtained from 198 lactating mothers across Canada, the average percentage of totaltrans (sum oft18∶1,t18∶2, andt18∶3) was 7.2% of breast milk fatty acids with a range of 0.1–17.2%. Analysis oft18∶1 isomer distribution indicated that partially hydrogenated vegetable oils are the major source of thesetrans fatty acids in human milk, whereas contribution from dairy products appeared to be relatively minor. Linoleci and α-linolenic acid levels were inversely related to the totaltrans fatty acids, indicating that the elevation oftrans fatty acids in Canadian human milk is at the expense of n-3 and n-6 essential fatty acids. Levels of arachidonic and docosahexaenoic acids did not correlate with their parent fatty acids, indicating that it might be difficult to elevate the levels of n-6 and n-3 C20–22 polyunsaturated fatty acids in breast milk by increasing levels of linoleic and α-linolenic acids in the mother's diet.  相似文献   

13.
Southern bluefin tuna (SBT, Thunnus maccoyii) aquaculture is a highly valuable industry, but research on these fish is hampered by strict catch quotas and the limited success of captive breeding. To address these limitations, we have developed a SBT cell line (SBT-E1) and here we report on fatty acid metabolism in this cell line. The SBT-E1 cells proliferated well in standard Leibovitz’s L-15 cell culture medium containing fetal bovine serum (FBS) as the source of fatty acids. Decreasing the FBS concentration decreased the cell proliferation. Addition of the C18 polyunsaturated fatty acids (PUFA) α-linolenic acid (ALA, 18:3n-3) or linoleic acid (LNA, 18:2n-6) to the cell culture medium had little effect on the proliferation of the cells, whereas addition of the long-chain PUFA (LC-PUFA) arachidonic acid (ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) or docosahexaenoic acid (DHA, 22:6n-3) significantly reduced the proliferation of the cells, especially at higher concentrations and especially for DHA. Addition of vitamin E to the culture medium overcame this effect, suggesting that it was due to oxidative stress. The fatty acid profiles of the total lipid from the cells reflected those of the respective culture media with little evidence for desaturation or elongation of any of the fatty acids. The only exceptions were EPA and ARA, which showed substantial elongation to 22:5n-3 and 22:4n-6, respectively, and DHA, which was significantly enriched in the cells compared with the culture medium. The results are discussed in light of the dietary PUFA requirements of SBT in the wild and in aquaculture.  相似文献   

14.
The fatty acid composition of 39 mature human milk samples from four Spanish women collected between 2 and 18 weeks during lactation was studied by gas chromatography. The conjugated linoleic acid (CLA) isomer profile was also determined by silver‐ion HPLC (Ag+‐HPLC) with three columns in series. The major fatty acid fraction in milk lipids throughout lactation was represented by the monounsaturated fatty acids, with oleic acid being the predominant compound (36–49% of total fatty acids). The saturated fatty acid fraction represented more than 35% of the total fatty acids, and polyunsaturated fatty acids ranged on average between 10 and 13%. Mean values of total CLA varied from 0.12 to 0.15% of total fatty acids. The complex mixture of CLA isomers was separated by Ag+‐HPLC. Rumenic acid (RA, cis‐9 trans‐11 C18:2) was the major isomer, representing more than 60% of total CLA. Trans‐9 trans‐11 and 7‐9 (cistrans + transcis) C18:2 were the main CLA isomers after RA. Very small amounts of 8‐10 and 10‐12 C18:2 (cis‐trans + trans‐cis) isomers were detected, as were different proportions of cis‐11 trans‐13 and trans‐11 cis‐13 C18:2. Although most of the isomers were present in all samples, their concentrations varied considerably.  相似文献   

15.
Multiple sclerosis (MS) is a neurologic autoimmune disease, which is the leading cause of nontraumatic neurologic disability in young adults in United States and Europe. n-3 polyunsaturated fatty acids (PUFA) are reported to mitigate severity of this disease. Recent studies suggest that phospholipid (PL) form of dietary n-3 PUFA may lead to their higher tissue accretion than triacylglycerol (TAG) form. We compared efficacy of PL-docosahexaenoic acid (22:6n-3) (DHA) and TAG-DHA on onset and severity of experimental autoimmune encephalomyelitis (EAE) in a mouse model of MS. Female mice were fed low alpha-linolenic acid (18:3n-3) (ALA) diet (control) for 2 weeks and then fed either control, 0.3%, or 1.0% DHA (PL or TAG) for 4 weeks pre-EAE induction and 4 weeks post-EAE induction. The brain and spinal cord n-6:n-3 ratio was significantly lower in all mice fed DHA compared to control. EAE onset was delayed in mice fed both DHA forms and concentrations, except for 1% TAG-DHA. The inverse association between the EAE score and the brain DHA concentration was nonsignificant at the end of the study (p = 0.08). Daily EAE scores of mice fed different DHA diets did not differ from control, however, the score of all DHA groups combined during days 9–16 was lower (p = 0.028) compared to the control. During days 17–22, the EAE score trended lower in 0.3% TAG-DHA and during days 23–28, the EAE score trended lower in both PL-DHA groups than those in all other groups. These findings suggest that TAG-DHA may be more effective than PL-DHA in the early phases of EAE, and in the final outcome, PL-DHA may be more effective than TAG-DHA.  相似文献   

16.
In the brain, approximately 90% of oxylipins are esterified to lipids. However, the significance of this esterification process is not known. In the present study, we (1) validated an aminopropyl solid phase extraction (SPE) method for separating esterified lipids using 100 and 500 mg columns and (2) applied the method to quantify the distribution of esterified oxylipins within phospholipids (PL) and neutral lipids (NL) (i.e. triacylglycerol and cholesteryl ester) in rats subjected to head-focused microwave fixation (controls) or CO2-induced hypercapnia/ischemia. We hypothesized that oxylipin esterification into these lipid pools will be altered following CO2-induced hypercapnia/ischemia. Lipids were extracted from control (n = 8) and CO2-asphyxiated (n = 8) rat brains and separated on aminopropyl cartridges to yield PL and NL. The separated lipid fractions were hydrolyzed, purified with hydrophobic–lipophilic–balanced SPE columns, and analyzed with ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. Method validation showed that the 500 mg (vs 100 mg) aminopropyl columns yielded acceptable separation and recovery of esterified fatty acid epoxides but not other oxylipins. Two epoxides of arachidonic acid (ARA) were significantly increased, and three epoxides of docosahexaenoic acid (DHA) were significantly decreased in brain NL of CO2-asphyxiated rats compared to controls subjected to head-focused microwave fixation. PL-bound fatty acid epoxides were highly variable and did not differ significantly between the groups. This study demonstrates that hypercapnia/ischemia alters the concentration of ARA and DHA epoxides within NL, reflecting an active turnover process regulating brain fatty acid epoxide concentrations.  相似文献   

17.
Docosahexaenoic acid (DHA) is an essential fatty acid (FA) important for health and neurodevelopment. Premature infants are at risk of DHA deficiency and circulating levels directly correlate with health outcomes. Most supplementation strategies have focused on increasing DHA content in mother's milk or infant formula. However, extremely premature infants may not reach full feedings for weeks and commercially available parenteral lipid emulsions do not contain preformed DHA, so blood levels decline rapidly after birth. Our objective was to develop a DHA supplementation strategy to overcome these barriers. This double‐blind, randomized, controlled trial determined feasibility, tolerability and efficacy of daily enteral DHA supplementation (50 mg/day) in addition to standard nutrition for preterm infants (24–34 weeks gestational age) beginning in the first week of life. Blood FA levels were analyzed at baseline, full feedings and near discharge in DHA (n = 31) or placebo supplemented (n = 29) preterm infants. Term peers (n = 30) were analyzed for comparison. Preterm infants had lower baseline DHA levels (p < 0.0001). Those receiving DHA had a progressive increase in circulating DHA over time (from 3.33 to 4.09 wt% or 2.88 to 3.55 mol%, p < 0.0001) while placebo‐supplemented infants (receiving standard neonatal nutrition) had no increase over time (from 3.35 to 3.32 wt% or 2.91 to 2.87 mol%). Although levels increased with additional DHA supplementation, preterm infants still had lower blood DHA levels than term peers (4.97 wt% or 4.31 mol%) at discharge (p = 0.0002). No differences in adverse events were observed between the groups. Overall, daily enteral DHA supplementation is feasible and alleviates deficiency in premature infants.  相似文献   

18.
We investigated the influence of dietary fatty acid profile and triacylglycerol structure on the fatty acid profile and triacylglycerol structure of milk lipids in two generations of rats. Three groups of rats received diets containing 20% fat of which approximately 20% was n-3 fatty acids located in different positions of the triacylglycerol: a fish oil-based diet [docosahexaenoic acid (22:6n-3) predominantly in thesn-2 position], a seal oil-based diet (22:6n-3) predominantly in thesn-1/sn-3 position or a plant oil-based diet [α-linolenic acid (18:3n-3) distributed evenly between the three positions]. This design allowed us to investigate (i) the effect of the triacylglycerol structure of the dietary fat; (ii) the effect of receiving the n-3 fatty acids as long-chain derivatives or as the precursor, 18:3n-3; and (iii) the long-term effects over two generations. The fatty acid profiles of the milk lipids largely reflected the diets, but in the second generation, the level of medium-chain fatty acids was higher (P<0.05) in the milk from rats fed the fish oil diet (24%) compared with the other dietary groups (15 and 18%). This suggests an increased endogenous synthesis of fatty acids in the mammary glands of the fish oil-fed rats. The levels of long-chain n-3 fatty acids in milk were higher (P<0.05) in rats fed maire n-3 fatty acids in milk were higher (P<0.05) in rats fed marie oils (8–12%) compared with rats fed vegetable oil (1%) in both generations. The level of long-chain n-3 fatty acids was significantly higher in the milk from the fish oil-fed rats (12.3%) compared to the seal-oil fed rats (8.0%) in the first generation, but not in the second generation (8.9 vs. 9.1%). The general structure of milk triacylglycerols was maintained in the three experimental groups with 16:0 acylated in thesn-2 position and 18:1 in thesn-1/sn-3 positions. The triacylglycerol structure of mammalian milk appears to be conserved even during extreme dietary manipulation over two generations and an extensive enrichment with long-chain n-3 polyunsaturated fatty acids requires their presence in the diet.  相似文献   

19.
Oxylipins are bioactive lipids formed by the monooxygenation of polyunsaturated fatty acids (PUFA). Eicosanoids derived from arachidonic acid (ARA) are the most well-studied class of oxylipins that influence brain functions in normal health and in disease. However, comprehensive profiling of brain oxylipins from other PUFA with differing functions, and the examination of the effects of dietary PUFA and sex differences in oxylipins are warranted. Therefore, female and male Sprague–Dawley rats were provided standard rodent diets that provided additional levels of the individual n-3 PUFA α-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), or the n-6 PUFA linoleic acid (LNA) alone or with ALA (LNA + ALA) compared to essential fatty acid-sufficient control diets. Oxylipins and PUFA were quantified in whole brains using HPLC-MS/MS and GC, respectively. Eighty-seven oxylipins were present at quantifiable levels: 51% and 17% of these were derived from ARA and DHA, respectively. At the mass level, ARA and DHA oxylipins comprised 81–90% and 6–12% of total oxylipins, while phospholipid ARA and DHA represented 25–35% and 49–62% of PUFA mass, respectively. Increasing dietary n-3 PUFA resulted in higher levels of oxylipins derived from their precursor PUFA; otherwise, the brain oxylipin profile was largely resistant to modulation by diet. Approximately 25% of oxylipins were higher in males, and this was largely unaffected by diet, further revealing a tight regulation of brain oxylipin levels. These fundamental data on brain oxylipin composition, diet effects, and sex differences will help guide future studies examining the functions of oxylipins in the brain.  相似文献   

20.
A structured lipid (SL) with a high amount of sn‐2 palmitic acid was synthesized from anhydrous milkfat and was then enriched with docosahexaenoic (DHA) and arachidonic (ARA) acids using an immobilized lipase. Three different methods were compared including physical blending, enzymatic interesterification, and enzymatic acidolysis. Products were compared with respect to differences in fatty acid profiles, reaction times, antioxidant contents, oxidative stability, melting and crystallization profiles, and reaction yields. The acidolysis method was the least suitable for the synthesis of desired product because of a low reaction yield, low incorporation of DHA, low oxidative stability, and the extra processing steps required. The physical blending and interesterification methods were suitable, but the interesterification product (IE‐SL) had higher amounts of ARA at the sn‐2 position. The IE‐SL contained total ARA and DHA of 0.63 and 0.50 mol%, and 0.55 and 0.46 mol% at the sn‐2 position, respectively. The IE‐SL also contained 44.97 mol% sn‐2 palmitic acid. The reaction yield for the IE‐SL was 91.84 %, and its melting completion and crystallization onset temperatures were 43.1 and 27.1 °C, respectively. This SL might be totally or partially used in commercial fat blends for infant formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号